Gradient design of ultrasmall dielectric nanofillers for PVDF-based high energy-density composite capacitors

Dielectric capacitors are key devices in pulsed power systems for their high power density. To improve the energy density, compact nanocomposite films comprising PVDF polymer and core-shell BaTiO3@TiO2 nanoparticles are prepared, in which the BaTiO3 (d ~ 8 nm) nanoparticles are encapsulated by the a...

Full description

Bibliographic Details
Main Authors: Yanan Hao, Zunpeng Feng, Zhengda He, Jiameng Zhang, Xiaoming Liu, Jing Qin, Limin Guo, Ke Bi
Format: Article
Language:English
Published: Elsevier 2020-04-01
Series:Materials & Design
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127520300563
Description
Summary:Dielectric capacitors are key devices in pulsed power systems for their high power density. To improve the energy density, compact nanocomposite films comprising PVDF polymer and core-shell BaTiO3@TiO2 nanoparticles are prepared, in which the BaTiO3 (d ~ 8 nm) nanoparticles are encapsulated by the amorphous TiO2 shell layer. Compared to the conventional BaTiO3/PVDF nanocomposite, the BaTiO3@TiO2/PVDF nanocomposite in this report takes advantage of the small particle size and the gradient dielectric design of the interface, which enhances the electric displacement as high as 65% and the breakdown strength of 20% simultaneously. A maximal discharged energy density of 11.34 J·cm−3 is achieved under an electric field of 420 kV·mm−1 in the nanocomposite film containing 5 vol% BaTiO3@10 wt%TiO2. Therefore, the gradient design of ultrasmall dielectric nanofillers shows high potential in fabrication of high energy-density nanocomposite. Keywords: Energy storage, Polymer nanocomposites, Interfaces, Dielectric, Core-shell
ISSN:0264-1275