Early life stress as a risk factor for substance use disorders: Clinical and neurobiological substrates

Background: Early Life Stress (ELS) can profoundly influence an individual′s genotype and phenotype. Effects of ELS can manifest in the short-term, late life and even in subsequent generations. ELS activate corticotrophin releasing factor (CRF); CRF influences drug seeking and addiction. The aim of...

Full description

Bibliographic Details
Main Authors: Sajoy Purathumuriyil Varghese, Janitza L Montalvo-Ortiz, John G Csernansky, Rodney I Eiger, Amy A Herrold, Maju Mathew Koola, Hongxin Dong
Format: Article
Language:English
Published: SAGE Publishing 2015-01-01
Series:Indian Journal of Psychological Medicine
Subjects:
Online Access:http://www.ijpm.info/article.asp?issn=0253-7176;year=2015;volume=37;issue=1;spage=36;epage=41;aulast=Varghese
Description
Summary:Background: Early Life Stress (ELS) can profoundly influence an individual′s genotype and phenotype. Effects of ELS can manifest in the short-term, late life and even in subsequent generations. ELS activate corticotrophin releasing factor (CRF); CRF influences drug seeking and addiction. The aim of this study was to examine the effects of endogenous elevated levels of CRF on addiction. Materials and Methods: Inducible forebrain over-expression of CRF mice (tetop-CRH x CaMKII-tTA) was used for this study. Morphine (10 mg/kg) was administered every other day for 10 days or with increasing doses of morphine: 20, 40, 60, 80, 100, and 100 mg/kg. The behavioral trials including morphine sensitization, Somatic Opiate Withdrawal Symptoms (SOWS) were conducted in a single, open field, activity. After behavioral trial, animals were perfused for immunohistochemistry analysis. Results: CRF-over expressed (CRF-OE) mice showed increase in morphine sensitization and withdrawal symptoms after morphine administration compared to wild type (WT) mice. The two-way ANOVA in the morphine sensitization study showed a significant effect of treatment (P<0.05) and genotype for distance traveled (P<0.01). In the SOWS study, opiate withdrawal symptoms such as rearings, circling behavior, grooming, and jump in CRF-OE were amplified in parallel to WT mice. In the immunohistochemistry study, pro-dynorphine (PDYN) expression was increased after morphine administration in both amygdala and nucleus accumbens (NAcc). Conclusions: CRF-OE in the forebrain increases the sensitization and withdrawal symptoms in morphine treated mice. On exposure to morphine, in CRF-OE mice the PDYN protein expression was increased as compared to WT mice in the amygdala and NAcc.
ISSN:0253-7176