lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain
We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating no...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-01-01
|
Series: | Frontiers in Neurology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00290/full |
id |
doaj-9196a25757424adc832f727fef3373fc |
---|---|
record_format |
Article |
spelling |
doaj-9196a25757424adc832f727fef3373fc2020-11-24T21:05:39ZengFrontiers Media S.A.Frontiers in Neurology1664-22952015-01-01510.3389/fneur.2014.00290126258lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction DomainFarshid eSepehrband0Farshid eSepehrband1Jeiran eChoupan2Jeiran eChoupan3Emmanuel eCaruyer4Nyoman Dana Kurniawan5Yaniv eGal6Quang M Tieng7Katie eMcMahon8Viktor eVegh9David C Reutens10Zhengyi eYang11Zhengyi eYang12Centre for Advanced Imaging, University of QueenslandQueensland Brain Institute, University of QueenslandCentre for Advanced Imaging, University of QueenslandQueensland Brain Institute, University of QueenslandDepartment of Radiology, University of PennsylvaniaCentre for Advanced Imaging, University of QueenslandSchool of Information Technology and Electrical Engineering, The University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandSchool of Information Technology and Electrical Engineering, The University of QueenslandWe describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fibre tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fibre tracks was significantly improved using our method.http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00290/fullHARDIDiffusion Weighted Imagingpre-processingLocal reconstructiongradient direction domainSpiral sampling |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Farshid eSepehrband Farshid eSepehrband Jeiran eChoupan Jeiran eChoupan Emmanuel eCaruyer Nyoman Dana Kurniawan Yaniv eGal Quang M Tieng Katie eMcMahon Viktor eVegh David C Reutens Zhengyi eYang Zhengyi eYang |
spellingShingle |
Farshid eSepehrband Farshid eSepehrband Jeiran eChoupan Jeiran eChoupan Emmanuel eCaruyer Nyoman Dana Kurniawan Yaniv eGal Quang M Tieng Katie eMcMahon Viktor eVegh David C Reutens Zhengyi eYang Zhengyi eYang lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain Frontiers in Neurology HARDI Diffusion Weighted Imaging pre-processing Local reconstruction gradient direction domain Spiral sampling |
author_facet |
Farshid eSepehrband Farshid eSepehrband Jeiran eChoupan Jeiran eChoupan Emmanuel eCaruyer Nyoman Dana Kurniawan Yaniv eGal Quang M Tieng Katie eMcMahon Viktor eVegh David C Reutens Zhengyi eYang Zhengyi eYang |
author_sort |
Farshid eSepehrband |
title |
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain |
title_short |
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain |
title_full |
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain |
title_fullStr |
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain |
title_full_unstemmed |
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain |
title_sort |
lop-dwi: a novel scheme for pre-processing of diffusion weighted images in the gradient direction domain |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Neurology |
issn |
1664-2295 |
publishDate |
2015-01-01 |
description |
We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fibre tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fibre tracks was significantly improved using our method. |
topic |
HARDI Diffusion Weighted Imaging pre-processing Local reconstruction gradient direction domain Spiral sampling |
url |
http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00290/full |
work_keys_str_mv |
AT farshidesepehrband lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT farshidesepehrband lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT jeiranechoupan lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT jeiranechoupan lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT emmanuelecaruyer lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT nyomandanakurniawan lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT yanivegal lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT quangmtieng lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT katieemcmahon lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT viktorevegh lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT davidcreutens lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT zhengyieyang lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT zhengyieyang lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain |
_version_ |
1716768075415552000 |