lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain

We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating no...

Full description

Bibliographic Details
Main Authors: Farshid eSepehrband, Jeiran eChoupan, Emmanuel eCaruyer, Nyoman Dana Kurniawan, Yaniv eGal, Quang M Tieng, Katie eMcMahon, Viktor eVegh, David C Reutens, Zhengyi eYang
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-01-01
Series:Frontiers in Neurology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00290/full
id doaj-9196a25757424adc832f727fef3373fc
record_format Article
spelling doaj-9196a25757424adc832f727fef3373fc2020-11-24T21:05:39ZengFrontiers Media S.A.Frontiers in Neurology1664-22952015-01-01510.3389/fneur.2014.00290126258lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction DomainFarshid eSepehrband0Farshid eSepehrband1Jeiran eChoupan2Jeiran eChoupan3Emmanuel eCaruyer4Nyoman Dana Kurniawan5Yaniv eGal6Quang M Tieng7Katie eMcMahon8Viktor eVegh9David C Reutens10Zhengyi eYang11Zhengyi eYang12Centre for Advanced Imaging, University of QueenslandQueensland Brain Institute, University of QueenslandCentre for Advanced Imaging, University of QueenslandQueensland Brain Institute, University of QueenslandDepartment of Radiology, University of PennsylvaniaCentre for Advanced Imaging, University of QueenslandSchool of Information Technology and Electrical Engineering, The University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandCentre for Advanced Imaging, University of QueenslandSchool of Information Technology and Electrical Engineering, The University of QueenslandWe describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fibre tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fibre tracks was significantly improved using our method.http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00290/fullHARDIDiffusion Weighted Imagingpre-processingLocal reconstructiongradient direction domainSpiral sampling
collection DOAJ
language English
format Article
sources DOAJ
author Farshid eSepehrband
Farshid eSepehrband
Jeiran eChoupan
Jeiran eChoupan
Emmanuel eCaruyer
Nyoman Dana Kurniawan
Yaniv eGal
Quang M Tieng
Katie eMcMahon
Viktor eVegh
David C Reutens
Zhengyi eYang
Zhengyi eYang
spellingShingle Farshid eSepehrband
Farshid eSepehrband
Jeiran eChoupan
Jeiran eChoupan
Emmanuel eCaruyer
Nyoman Dana Kurniawan
Yaniv eGal
Quang M Tieng
Katie eMcMahon
Viktor eVegh
David C Reutens
Zhengyi eYang
Zhengyi eYang
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain
Frontiers in Neurology
HARDI
Diffusion Weighted Imaging
pre-processing
Local reconstruction
gradient direction domain
Spiral sampling
author_facet Farshid eSepehrband
Farshid eSepehrband
Jeiran eChoupan
Jeiran eChoupan
Emmanuel eCaruyer
Nyoman Dana Kurniawan
Yaniv eGal
Quang M Tieng
Katie eMcMahon
Viktor eVegh
David C Reutens
Zhengyi eYang
Zhengyi eYang
author_sort Farshid eSepehrband
title lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain
title_short lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain
title_full lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain
title_fullStr lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain
title_full_unstemmed lop-DWI: A Novel Scheme for Pre-Processing of Diffusion Weighted Images in the Gradient Direction Domain
title_sort lop-dwi: a novel scheme for pre-processing of diffusion weighted images in the gradient direction domain
publisher Frontiers Media S.A.
series Frontiers in Neurology
issn 1664-2295
publishDate 2015-01-01
description We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fibre tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fibre tracks was significantly improved using our method.
topic HARDI
Diffusion Weighted Imaging
pre-processing
Local reconstruction
gradient direction domain
Spiral sampling
url http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00290/full
work_keys_str_mv AT farshidesepehrband lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT farshidesepehrband lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT jeiranechoupan lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT jeiranechoupan lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT emmanuelecaruyer lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT nyomandanakurniawan lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT yanivegal lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT quangmtieng lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT katieemcmahon lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT viktorevegh lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT davidcreutens lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT zhengyieyang lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT zhengyieyang lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
_version_ 1716768075415552000