Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entr...

Full description

Bibliographic Details
Main Authors: B. Croft, J. R. Pierce, R. V. Martin, C. Hoose, U. Lohmann
Format: Article
Language:English
Published: Copernicus Publications 2012-11-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/10725/2012/acp-12-10725-2012.pdf
id doaj-91de4b7f99e5404b9950182da9817e25
record_format Article
spelling doaj-91de4b7f99e5404b9950182da9817e252020-11-24T22:17:14ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-11-011222107251074810.5194/acp-12-10725-2012Uncertainty associated with convective wet removal of entrained aerosols in a global climate modelB. CroftJ. R. PierceR. V. MartinC. HooseU. LohmannThe uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. <br><br> A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. <br><br> Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all entrained accumulation and coarse mode aerosols are assumed to be cloud-droplet borne or ice-crystal borne, and evaporation due to the Bergeron-Findeisen process is neglected. <br><br> The simulated convective wet scavenging of entrained accumulation and coarse mode aerosols has feedbacks on new particle formation and the number of Aitken mode aerosols, which control stratiform and convective cloud droplet number concentrations and yield precipitation changes in the ECHAM5-HAM model. However, the geographic distribution of aerosol annual mean convective wet deposition change in the model is driven by changes to the assumptions regarding the scavenging of aerosols entrained above cloud bases rather than by precipitation changes, except for sea salt deposition in the tropics. Uncertainty in the seasonal, regional cycles of AOD due to assumptions about entrained aerosol wet scavenging is similar in magnitude to the estimated error in the AOD retrievals. <br><br> The uncertainty in aerosol concentrations, burdens, and AOD attributed to different assumptions for the wet scavenging of aerosols entrained above convective cloud bases in a global model motivates the ongoing need to better understand and model the activation and impaction processes that aerosols undergo after entrainment into convective updrafts.http://www.atmos-chem-phys.net/12/10725/2012/acp-12-10725-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author B. Croft
J. R. Pierce
R. V. Martin
C. Hoose
U. Lohmann
spellingShingle B. Croft
J. R. Pierce
R. V. Martin
C. Hoose
U. Lohmann
Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
Atmospheric Chemistry and Physics
author_facet B. Croft
J. R. Pierce
R. V. Martin
C. Hoose
U. Lohmann
author_sort B. Croft
title Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
title_short Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
title_full Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
title_fullStr Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
title_full_unstemmed Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
title_sort uncertainty associated with convective wet removal of entrained aerosols in a global climate model
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2012-11-01
description The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. <br><br> A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. <br><br> Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all entrained accumulation and coarse mode aerosols are assumed to be cloud-droplet borne or ice-crystal borne, and evaporation due to the Bergeron-Findeisen process is neglected. <br><br> The simulated convective wet scavenging of entrained accumulation and coarse mode aerosols has feedbacks on new particle formation and the number of Aitken mode aerosols, which control stratiform and convective cloud droplet number concentrations and yield precipitation changes in the ECHAM5-HAM model. However, the geographic distribution of aerosol annual mean convective wet deposition change in the model is driven by changes to the assumptions regarding the scavenging of aerosols entrained above cloud bases rather than by precipitation changes, except for sea salt deposition in the tropics. Uncertainty in the seasonal, regional cycles of AOD due to assumptions about entrained aerosol wet scavenging is similar in magnitude to the estimated error in the AOD retrievals. <br><br> The uncertainty in aerosol concentrations, burdens, and AOD attributed to different assumptions for the wet scavenging of aerosols entrained above convective cloud bases in a global model motivates the ongoing need to better understand and model the activation and impaction processes that aerosols undergo after entrainment into convective updrafts.
url http://www.atmos-chem-phys.net/12/10725/2012/acp-12-10725-2012.pdf
work_keys_str_mv AT bcroft uncertaintyassociatedwithconvectivewetremovalofentrainedaerosolsinaglobalclimatemodel
AT jrpierce uncertaintyassociatedwithconvectivewetremovalofentrainedaerosolsinaglobalclimatemodel
AT rvmartin uncertaintyassociatedwithconvectivewetremovalofentrainedaerosolsinaglobalclimatemodel
AT choose uncertaintyassociatedwithconvectivewetremovalofentrainedaerosolsinaglobalclimatemodel
AT ulohmann uncertaintyassociatedwithconvectivewetremovalofentrainedaerosolsinaglobalclimatemodel
_version_ 1725785900182405120