Coriandrum sativum L. (Coriander) essential oil: antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression.

Oral candidiasis is an opportunistic fungal infection of the oral cavity with increasingly worldwide prevalence and incidence rates. Novel specifically-targeted strategies to manage this ailment have been proposed using essential oils (EO) known to have antifungal properties. In this study, we aim t...

Full description

Bibliographic Details
Main Authors: Irlan de Almeida Freires, Ramiro Mendonça Murata, Vivian Fernandes Furletti, Adilson Sartoratto, Severino Matias de Alencar, Glyn Mara Figueira, Janaina Aparecida de Oliveira Rodrigues, Marta Cristina Teixeira Duarte, Pedro Luiz Rosalen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4047076?pdf=render
Description
Summary:Oral candidiasis is an opportunistic fungal infection of the oral cavity with increasingly worldwide prevalence and incidence rates. Novel specifically-targeted strategies to manage this ailment have been proposed using essential oils (EO) known to have antifungal properties. In this study, we aim to investigate the antifungal activity and mode of action of the EO from Coriandrum sativum L. (coriander) leaves on Candida spp. In addition, we detected the molecular targets affected in whole-genome expression in human cells. The EO phytochemical profile indicates monoterpenes and sesquiterpenes as major components, which are likely to negatively impact the viability of yeast cells. There seems to be a synergistic activity of the EO chemical compounds as their isolation into fractions led to a decreased antimicrobial effect. C. sativum EO may bind to membrane ergosterol, increasing ionic permeability and causing membrane damage leading to cell death, but it does not act on cell wall biosynthesis-related pathways. This mode of action is illustrated by photomicrographs showing disruption in biofilm integrity caused by the EO at varied concentrations. The EO also inhibited Candida biofilm adherence to a polystyrene substrate at low concentrations, and decreased the proteolytic activity of Candida albicans at minimum inhibitory concentration. Finally, the EO and its selected active fraction had low cytotoxicity on human cells, with putative mechanisms affecting gene expression in pathways involving chemokines and MAP-kinase (proliferation/apoptosis), as well as adhesion proteins. These findings highlight the potential antifungal activity of the EO from C. sativum leaves and suggest avenues for future translational toxicological research.
ISSN:1932-6203