Covering-Based Rough Sets on Eulerian Matroids
Rough set theory is an efficient and essential tool for dealing with vagueness and granularity in information systems. Covering-based rough set theory is proposed as a significant generalization of classical rough sets. Matroid theory is a vital structure with high applicability and borrows extensiv...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2013/254797 |
Summary: | Rough set theory is an efficient and essential tool for dealing with vagueness and granularity in information systems. Covering-based rough set theory is proposed as a significant generalization of classical rough sets. Matroid theory is a vital structure with high applicability and borrows extensively from linear algebra and graph theory. In this paper, one type of covering-based approximations is studied from the viewpoint of Eulerian matroids. First, we explore the circuits of an Eulerian matroid from the perspective of coverings. Second, this type of covering-based approximations is represented by the circuits of Eulerian matroids. Moreover, the conditions under which the covering-based upper approximation operator is the closure operator of a matroid are presented. Finally, a matroidal structure of covering-based rough sets is constructed. These results show many potential connections between covering-based rough sets and matroids. |
---|---|
ISSN: | 1110-757X 1687-0042 |