A Novel Nature-Inspired Maximum Power Point Tracking (MPPT) Controller Based on SSA-GWO Algorithm for Partially Shaded Photovoltaic Systems

To overcome the real-time problem of maximum power point tracking (MPPT) for partially shaded photovoltaic (PV) systems, a novel nature-inspired MPPT controller with fast convergence and high accuracy is proposed in this paper. The proposed MPPT controller is achieved by combining salp swarm algorit...

Full description

Bibliographic Details
Main Authors: Yihao Wan, Mingxuan Mao, Lin Zhou, Qianjin Zhang, Xinze Xi, Chen Zheng
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/8/6/680
Description
Summary:To overcome the real-time problem of maximum power point tracking (MPPT) for partially shaded photovoltaic (PV) systems, a novel nature-inspired MPPT controller with fast convergence and high accuracy is proposed in this paper. The proposed MPPT controller is achieved by combining salp swarm algorithm (SSA) with grey wolf optimizer (GWO) (namely, SSA-GWO). The leader structure of the GWO algorithm is introduced into the basic SSA algorithm to enhance the global search capability. Numerical simulation on 13 benchmark functions was done to evaluate the proposed SSA-GWO algorithm. Finally, the MPPT performance on PV system with the proposed SSA-GWO algorithm under static and dynamic partial shading conditions was investigated and compared with conventional MPPT algorithms. The quantitative and simulation results validated the effectiveness and superiority of the proposed method.
ISSN:2079-9292