Disk modelling by radiation-magnetohydrodynamic simulations

Historically, various accretion models have been discussed under radially one-zone approximations. In such one-zone models, however, dynamical aspects of the accretion flow, such as internal circulation and outflows, have been totally neglected. Further, the disk viscosity is usually described by th...

Full description

Bibliographic Details
Main Authors: Takeuchi S., Ohsuga K., Mineshige S.
Format: Article
Language:English
Published: EDP Sciences 2012-12-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20123906005
Description
Summary:Historically, various accretion models have been discussed under radially one-zone approximations. In such one-zone models, however, dynamical aspects of the accretion flow, such as internal circulation and outflows, have been totally neglected. Further, the disk viscosity is usually described by the phenomenological α-viscosity model. We, here, elucidate the theory of accretion flows and outflows based on our global, two-dimensional radiation-magnetohydrodynamic simulations, not relying on the α model. We have succeeded in producing three distinct states of accretion flow by controling only one parameter, a density normalization. Of particular importance is the presence of outflows in all three states. Several noteworthy features of the supercritical (or super-Eddington) accretion flows are found; that is, relativistic, collimated outflows (jets), and low-velocity, uncollimated outflows with clumpy structure. Observational implications are briefly discussed.
ISSN:2100-014X