Overexpression of alpha-synuclein promotes both cell proliferation and cell toxicity in human SH-SY5Y neuroblastoma cells

Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson’s disease. Whether aSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved. Remarkably, t...

Full description

Bibliographic Details
Main Authors: Noela Rodríguez-Losada, Javier de la Rosa, María Larriva, Rune Wendelbo, José A. Aguirre, Javier S. Castresana, Santiago J. Ballaz
Format: Article
Language:English
Published: Elsevier 2020-05-01
Series:Journal of Advanced Research
Online Access:http://www.sciencedirect.com/science/article/pii/S2090123220300096
Description
Summary:Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson’s disease. Whether aSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved. Remarkably, the accumulation of aSyn is involved in cancer. Here, the neuroblastoma SH-SY5Y cell line was genetically engineered to overexpress aSyn at low and at high levels. aSyn cytotoxicity was assessed by the MTT and vital-dye exclusion methods, observed at the beginning of the sub-culture of low-aSyn overexpressing neurons when cells can barely proliferate exponentially. Conversely, high-aSyn overexpressing cultures grew at high rates while showing enhanced colony formation compared to low-aSyn neurons. Cytotoxicity of aSyn overexpression was indirectly revealed by the addition of pro-oxidant rotenone. Pretreatment with partially reduced graphene oxide, an apoptotic agent, increased toxicity of rotenone in low-aSyn neurons, but, it did not in high-aSyn neurons. Consistent with their enhanced proliferation, high-aSyn neurons showed elevated levels of SMP30, a senescence-marker protein, and the mitosis Ki-67 marker. High-aSyn overexpression conferred to the carcinogenic neurons heightened tumorigenicity and resistance to senescence compared to low-aSyn cells, thus pointing to an inadequate level of aSyn stimulation, rather than the aSyn overload itself, as one of the factors contributing to α-synucleinopathy. Keywords: Alpha-synuclein, SH-SY5Y cells, Rotenone, Graphene oxide, Parkinson’s disease, Cell senescence
ISSN:2090-1232