Layout Optimisation of Wave Energy Converter Arrays

This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC) arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation, a...

Full description

Bibliographic Details
Main Authors: Pau Mercadé Ruiz, Vincenzo Nava, Mathew B. R. Topper, Pablo Ruiz Minguela, Francesco Ferri, Jens Peter Kofoed
Format: Article
Language:English
Published: MDPI AG 2017-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/10/9/1262
id doaj-9332e28d37e24acda084f2a7c967bcfc
record_format Article
spelling doaj-9332e28d37e24acda084f2a7c967bcfc2020-11-24T21:38:51ZengMDPI AGEnergies1996-10732017-08-01109126210.3390/en10091262en10091262Layout Optimisation of Wave Energy Converter ArraysPau Mercadé Ruiz0Vincenzo Nava1Mathew B. R. Topper2Pablo Ruiz Minguela3Francesco Ferri4Jens Peter Kofoed5Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, DenmarkTecnalia Research and Innovation, Energy and Environmental Division, Parque Tecnologico de Bizkaia, 48160 Derio, SpainInstitute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3DW, Scotland, UKTecnalia Research and Innovation, Energy and Environmental Division, Parque Tecnologico de Bizkaia, 48160 Derio, SpainDepartment of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, DenmarkDepartment of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, DenmarkThis paper proposes an optimisation strategy for the layout design of wave energy converter (WEC) arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA), a genetic algorithm (GA) and the glowworm swarm optimisation (GSO) algorithm. The results show slightly higher performances for the latter two algorithms; however, the first turns out to be significantly less computationally demanding.https://www.mdpi.com/1996-1073/10/9/1262wave energy arraysarray layoutoptimisationevolution strategyswarm intelligence
collection DOAJ
language English
format Article
sources DOAJ
author Pau Mercadé Ruiz
Vincenzo Nava
Mathew B. R. Topper
Pablo Ruiz Minguela
Francesco Ferri
Jens Peter Kofoed
spellingShingle Pau Mercadé Ruiz
Vincenzo Nava
Mathew B. R. Topper
Pablo Ruiz Minguela
Francesco Ferri
Jens Peter Kofoed
Layout Optimisation of Wave Energy Converter Arrays
Energies
wave energy arrays
array layout
optimisation
evolution strategy
swarm intelligence
author_facet Pau Mercadé Ruiz
Vincenzo Nava
Mathew B. R. Topper
Pablo Ruiz Minguela
Francesco Ferri
Jens Peter Kofoed
author_sort Pau Mercadé Ruiz
title Layout Optimisation of Wave Energy Converter Arrays
title_short Layout Optimisation of Wave Energy Converter Arrays
title_full Layout Optimisation of Wave Energy Converter Arrays
title_fullStr Layout Optimisation of Wave Energy Converter Arrays
title_full_unstemmed Layout Optimisation of Wave Energy Converter Arrays
title_sort layout optimisation of wave energy converter arrays
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2017-08-01
description This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC) arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA), a genetic algorithm (GA) and the glowworm swarm optimisation (GSO) algorithm. The results show slightly higher performances for the latter two algorithms; however, the first turns out to be significantly less computationally demanding.
topic wave energy arrays
array layout
optimisation
evolution strategy
swarm intelligence
url https://www.mdpi.com/1996-1073/10/9/1262
work_keys_str_mv AT paumercaderuiz layoutoptimisationofwaveenergyconverterarrays
AT vincenzonava layoutoptimisationofwaveenergyconverterarrays
AT mathewbrtopper layoutoptimisationofwaveenergyconverterarrays
AT pabloruizminguela layoutoptimisationofwaveenergyconverterarrays
AT francescoferri layoutoptimisationofwaveenergyconverterarrays
AT jenspeterkofoed layoutoptimisationofwaveenergyconverterarrays
_version_ 1725934196231241728