Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming
Noticing that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">E</mi> </semantics> </math> </inline-formula>-convexity, <i>m</i>-convexity and <i>b</i>-invexity have similar struc...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/10/12/774 |
id |
doaj-933e23a7a49542c79f49eaa2c8c593b8 |
---|---|
record_format |
Article |
spelling |
doaj-933e23a7a49542c79f49eaa2c8c593b82020-11-25T00:17:16ZengMDPI AGSymmetry2073-89942018-12-01101277410.3390/sym10120774sym10120774Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex ProgrammingBo Yu0Jiagen Liao1Tingsong Du2Department of Mathematics, College of Science, China Three Gorges University, Yichang 443002, ChinaDepartment of Mathematics, College of Science, China Three Gorges University, Yichang 443002, ChinaDepartment of Mathematics, College of Science, China Three Gorges University, Yichang 443002, ChinaNoticing that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">E</mi> </semantics> </math> </inline-formula>-convexity, <i>m</i>-convexity and <i>b</i>-invexity have similar structures in their definitions, there are some possibilities to treat these three class of mappings uniformly. For this purpose, the definitions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex sets and the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex mappings are introduced. The properties concerning operations that preserve the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity of the proposed mappings are derived. The unconstrained and inequality constrained <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are considered, where the sufficient conditions of optimality are developed and the uniqueness of the solution to the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are investigated. Furthermore, the sufficient optimality conditions and the Fritz⁻John necessary optimality criteria for nonlinear multi-objective <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are established. The Wolfe-type symmetric duality theorems under the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity, including weak and strong symmetric duality theorems, are also presented. Finally, we construct two examples in detail to show how the obtained results can be used in <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming.https://www.mdpi.com/2073-8994/10/12/774(<i>ℰ</i>,<i>m</i>)-convex sets<i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex mappingsoptimality conditionsduality theorems |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bo Yu Jiagen Liao Tingsong Du |
spellingShingle |
Bo Yu Jiagen Liao Tingsong Du Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming Symmetry (<i>ℰ</i>,<i>m</i>)-convex sets <i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex mappings optimality conditions duality theorems |
author_facet |
Bo Yu Jiagen Liao Tingsong Du |
author_sort |
Bo Yu |
title |
Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming |
title_short |
Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming |
title_full |
Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming |
title_fullStr |
Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming |
title_full_unstemmed |
Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming |
title_sort |
optimality and duality with respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex programming |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2018-12-01 |
description |
Noticing that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">E</mi> </semantics> </math> </inline-formula>-convexity, <i>m</i>-convexity and <i>b</i>-invexity have similar structures in their definitions, there are some possibilities to treat these three class of mappings uniformly. For this purpose, the definitions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex sets and the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex mappings are introduced. The properties concerning operations that preserve the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity of the proposed mappings are derived. The unconstrained and inequality constrained <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are considered, where the sufficient conditions of optimality are developed and the uniqueness of the solution to the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are investigated. Furthermore, the sufficient optimality conditions and the Fritz⁻John necessary optimality criteria for nonlinear multi-objective <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are established. The Wolfe-type symmetric duality theorems under the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity, including weak and strong symmetric duality theorems, are also presented. Finally, we construct two examples in detail to show how the obtained results can be used in <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming. |
topic |
(<i>ℰ</i>,<i>m</i>)-convex sets <i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex mappings optimality conditions duality theorems |
url |
https://www.mdpi.com/2073-8994/10/12/774 |
work_keys_str_mv |
AT boyu optimalityanddualitywithrespecttoibiieiimiconvexprogramming AT jiagenliao optimalityanddualitywithrespecttoibiieiimiconvexprogramming AT tingsongdu optimalityanddualitywithrespecttoibiieiimiconvexprogramming |
_version_ |
1725380039247134720 |