Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming

Noticing that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">E</mi> </semantics> </math> </inline-formula>-convexity, <i>m</i>-convexity and <i>b</i>-invexity have similar struc...

Full description

Bibliographic Details
Main Authors: Bo Yu, Jiagen Liao, Tingsong Du
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/10/12/774
id doaj-933e23a7a49542c79f49eaa2c8c593b8
record_format Article
spelling doaj-933e23a7a49542c79f49eaa2c8c593b82020-11-25T00:17:16ZengMDPI AGSymmetry2073-89942018-12-01101277410.3390/sym10120774sym10120774Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex ProgrammingBo Yu0Jiagen Liao1Tingsong Du2Department of Mathematics, College of Science, China Three Gorges University, Yichang 443002, ChinaDepartment of Mathematics, College of Science, China Three Gorges University, Yichang 443002, ChinaDepartment of Mathematics, College of Science, China Three Gorges University, Yichang 443002, ChinaNoticing that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">E</mi> </semantics> </math> </inline-formula>-convexity, <i>m</i>-convexity and <i>b</i>-invexity have similar structures in their definitions, there are some possibilities to treat these three class of mappings uniformly. For this purpose, the definitions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex sets and the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex mappings are introduced. The properties concerning operations that preserve the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity of the proposed mappings are derived. The unconstrained and inequality constrained <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are considered, where the sufficient conditions of optimality are developed and the uniqueness of the solution to the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are investigated. Furthermore, the sufficient optimality conditions and the Fritz&#8315;John necessary optimality criteria for nonlinear multi-objective <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are established. The Wolfe-type symmetric duality theorems under the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity, including weak and strong symmetric duality theorems, are also presented. Finally, we construct two examples in detail to show how the obtained results can be used in <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming.https://www.mdpi.com/2073-8994/10/12/774(<i>ℰ</i>,<i>m</i>)-convex sets<i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex mappingsoptimality conditionsduality theorems
collection DOAJ
language English
format Article
sources DOAJ
author Bo Yu
Jiagen Liao
Tingsong Du
spellingShingle Bo Yu
Jiagen Liao
Tingsong Du
Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming
Symmetry
(<i>ℰ</i>,<i>m</i>)-convex sets
<i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex mappings
optimality conditions
duality theorems
author_facet Bo Yu
Jiagen Liao
Tingsong Du
author_sort Bo Yu
title Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming
title_short Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming
title_full Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming
title_fullStr Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming
title_full_unstemmed Optimality and Duality with Respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-Convex Programming
title_sort optimality and duality with respect to <i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex programming
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2018-12-01
description Noticing that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">E</mi> </semantics> </math> </inline-formula>-convexity, <i>m</i>-convexity and <i>b</i>-invexity have similar structures in their definitions, there are some possibilities to treat these three class of mappings uniformly. For this purpose, the definitions of the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex sets and the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex mappings are introduced. The properties concerning operations that preserve the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity of the proposed mappings are derived. The unconstrained and inequality constrained <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are considered, where the sufficient conditions of optimality are developed and the uniqueness of the solution to the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are investigated. Furthermore, the sufficient optimality conditions and the Fritz&#8315;John necessary optimality criteria for nonlinear multi-objective <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming are established. The Wolfe-type symmetric duality theorems under the <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convexity, including weak and strong symmetric duality theorems, are also presented. Finally, we construct two examples in detail to show how the obtained results can be used in <i>b</i>-<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">E</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-convex programming.
topic (<i>ℰ</i>,<i>m</i>)-convex sets
<i>b</i>-(<i>ℰ</i>,<i>m</i>)-convex mappings
optimality conditions
duality theorems
url https://www.mdpi.com/2073-8994/10/12/774
work_keys_str_mv AT boyu optimalityanddualitywithrespecttoibiieiimiconvexprogramming
AT jiagenliao optimalityanddualitywithrespecttoibiieiimiconvexprogramming
AT tingsongdu optimalityanddualitywithrespecttoibiieiimiconvexprogramming
_version_ 1725380039247134720