Design of a 4.8-m ring for inverse Compton scattering x-ray source

In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a...

Full description

Bibliographic Details
Main Authors: H. S. Xu, W. H. Huang, C. X. Tang, S. Y. Lee
Format: Article
Language:English
Published: American Physical Society 2014-07-01
Series:Physical Review Special Topics. Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevSTAB.17.070101
Description
Summary:In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.
ISSN:1098-4402