Modeling Analysis and Structural Design of Human Lower Limb Rehabilitation Robot

With the rapid development of science and technology, robots are widely used in rehabilitation training. According to the physiological structure of human lower limbs and gait characteristics of walking, a lower limb rehabilitation robot is designed in this paper. We design the structure in a form o...

Full description

Bibliographic Details
Main Authors: Wang Zhiming, Cui Lizhen, Cai Zhenglong, Pang Changfu
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201823202032
Description
Summary:With the rapid development of science and technology, robots are widely used in rehabilitation training. According to the physiological structure of human lower limbs and gait characteristics of walking, a lower limb rehabilitation robot is designed in this paper. We design the structure in a form of exoskeleton with three degrees of freedom in which kinematics analysis is carried out by the D-H coordinate transformation method. And then we obtain the relationship between the end effector and the angle of each joint. In addition, the relationship between end effector speed and joint speed is obtained through Jacobian matrix and Lagrange equilibrium method is used for dynamic analysis. The joint torque is calculated through the joint speed and three dimensional modeling of lower limb rehabilitation robot was reconstructed by Pro-e. Finally, the driving mode is selected and calculated.
ISSN:2261-236X