Performance of digital patternless freeze-casting sand mould

Digital patternless freeze-casting technology is a new approach for obtaining frozen sand moulds using digital milling technology. The change law of tensile strength and air permeability of frozen sand moulds (100-mesh and 200-mesh silica sand, and zircon sand moulds) under different freezing temper...

Full description

Bibliographic Details
Main Authors: Zhong-de Shan, Hao-qin Yang, Feng Liu
Format: Article
Language:English
Published: Foundry Journal Agency 2020-07-01
Series:China Foundry
Subjects:
Online Access:https://link.springer.com/article/10.1007/s41230-020-9163-x
Description
Summary:Digital patternless freeze-casting technology is a new approach for obtaining frozen sand moulds using digital milling technology. The change law of tensile strength and air permeability of frozen sand moulds (100-mesh and 200-mesh silica sand, and zircon sand moulds) under different freezing temperatures and water contents was studied. Results show that with the decrease of freezing temperature and the increase of water contents, the tensile strength and air permeability of the sand moulds are gradually improved. Meanwhile, computed tomography technology was used to characterize the shape and size of the water film between the sand particles mixed with 4wt.% water. The results show that in silica sand moulds, the form of water film is lumpy, and 200-mesh silica sand moulds have more water films and higher proportion of small-sized water films than 100-mesh silica sand moulds, while in zircon sand moulds, the form of water film is membranous. At the same freezing temperature and water content, the tensile strength of zircon sand mould is the highest, and 100-mesh silica sand mould is the lowest. A comparative solidification experiment of A356 aluminum alloy was carried out in frozen sand mould and resin sand mould. The results show that the primary α-Al phase appears in the form of equiaxed and eutectic silicon phase is needle-like in freezing sand mould casting, but the primary α-Al phase grows in the form of dendrites, and the eutectic silicon phase is coarse needle-like in the resin sand mould casting. The difference of microstructure is caused by the different cooling rate. The cooling rate of A356 aluminum alloy in frozen sand mould is higher than that in resin sand mould.
ISSN:1672-6421
1672-6421