Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
A graph labeling is the task of integers, generally spoken to by whole numbers, to the edges or vertices, or both of a graph. Formally, given a graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo str...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/6/12/304 |
id |
doaj-94170b233b1344e2b9f8cfe1b1036c48 |
---|---|
record_format |
Article |
spelling |
doaj-94170b233b1344e2b9f8cfe1b1036c482020-11-24T21:35:09ZengMDPI AGMathematics2227-73902018-12-0161230410.3390/math6120304math6120304Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen GraphJuan L. G. Guirao0Sarfraz Ahmad1Muhammad Kamran Siddiqui2Muhammad Ibrahim3Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203 Cartagena, Región de Murcia, SpainDepartment of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, PakistanDepartment of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, PakistanCentre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Multan 60800, PakistanA graph labeling is the task of integers, generally spoken to by whole numbers, to the edges or vertices, or both of a graph. Formally, given a graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> a vertex labeling is a capacity from <i>V</i> to an arrangement of integers. A graph with such a capacity characterized is known as a vertex-labeled graph. Similarly, an edge labeling is an element of <i>E</i> to an arrangement of labels. For this situation, the graph is called an edge-labeled graph. We examine an edge irregular reflexive <i>k</i>-labeling for the disjoint association of the cycle related graphs and decide the correct estimation of the reflexive edge strength for the disjoint association of <i>s</i> isomorphic duplicates of the cycle related graphs to be specific Generalized Peterson graphs.https://www.mdpi.com/2227-7390/6/12/304edge irregular reflexive labelingreflexive edge strengthgeneralized peterson graphs |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Juan L. G. Guirao Sarfraz Ahmad Muhammad Kamran Siddiqui Muhammad Ibrahim |
spellingShingle |
Juan L. G. Guirao Sarfraz Ahmad Muhammad Kamran Siddiqui Muhammad Ibrahim Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph Mathematics edge irregular reflexive labeling reflexive edge strength generalized peterson graphs |
author_facet |
Juan L. G. Guirao Sarfraz Ahmad Muhammad Kamran Siddiqui Muhammad Ibrahim |
author_sort |
Juan L. G. Guirao |
title |
Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph |
title_short |
Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph |
title_full |
Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph |
title_fullStr |
Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph |
title_full_unstemmed |
Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph |
title_sort |
edge irregular reflexive labeling for disjoint union of generalized petersen graph |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2018-12-01 |
description |
A graph labeling is the task of integers, generally spoken to by whole numbers, to the edges or vertices, or both of a graph. Formally, given a graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> a vertex labeling is a capacity from <i>V</i> to an arrangement of integers. A graph with such a capacity characterized is known as a vertex-labeled graph. Similarly, an edge labeling is an element of <i>E</i> to an arrangement of labels. For this situation, the graph is called an edge-labeled graph. We examine an edge irregular reflexive <i>k</i>-labeling for the disjoint association of the cycle related graphs and decide the correct estimation of the reflexive edge strength for the disjoint association of <i>s</i> isomorphic duplicates of the cycle related graphs to be specific Generalized Peterson graphs. |
topic |
edge irregular reflexive labeling reflexive edge strength generalized peterson graphs |
url |
https://www.mdpi.com/2227-7390/6/12/304 |
work_keys_str_mv |
AT juanlgguirao edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph AT sarfrazahmad edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph AT muhammadkamransiddiqui edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph AT muhammadibrahim edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph |
_version_ |
1725946373036048384 |