Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph

A graph labeling is the task of integers, generally spoken to by whole numbers, to the edges or vertices, or both of a graph. Formally, given a graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo str...

Full description

Bibliographic Details
Main Authors: Juan L. G. Guirao, Sarfraz Ahmad, Muhammad Kamran Siddiqui, Muhammad Ibrahim
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/12/304
id doaj-94170b233b1344e2b9f8cfe1b1036c48
record_format Article
spelling doaj-94170b233b1344e2b9f8cfe1b1036c482020-11-24T21:35:09ZengMDPI AGMathematics2227-73902018-12-0161230410.3390/math6120304math6120304Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen GraphJuan L. G. Guirao0Sarfraz Ahmad1Muhammad Kamran Siddiqui2Muhammad Ibrahim3Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203 Cartagena, Región de Murcia, SpainDepartment of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, PakistanDepartment of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, PakistanCentre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Multan 60800, PakistanA graph labeling is the task of integers, generally spoken to by whole numbers, to the edges or vertices, or both of a graph. Formally, given a graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> a vertex labeling is a capacity from <i>V</i> to an arrangement of integers. A graph with such a capacity characterized is known as a vertex-labeled graph. Similarly, an edge labeling is an element of <i>E</i> to an arrangement of labels. For this situation, the graph is called an edge-labeled graph. We examine an edge irregular reflexive <i>k</i>-labeling for the disjoint association of the cycle related graphs and decide the correct estimation of the reflexive edge strength for the disjoint association of <i>s</i> isomorphic duplicates of the cycle related graphs to be specific Generalized Peterson graphs.https://www.mdpi.com/2227-7390/6/12/304edge irregular reflexive labelingreflexive edge strengthgeneralized peterson graphs
collection DOAJ
language English
format Article
sources DOAJ
author Juan L. G. Guirao
Sarfraz Ahmad
Muhammad Kamran Siddiqui
Muhammad Ibrahim
spellingShingle Juan L. G. Guirao
Sarfraz Ahmad
Muhammad Kamran Siddiqui
Muhammad Ibrahim
Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
Mathematics
edge irregular reflexive labeling
reflexive edge strength
generalized peterson graphs
author_facet Juan L. G. Guirao
Sarfraz Ahmad
Muhammad Kamran Siddiqui
Muhammad Ibrahim
author_sort Juan L. G. Guirao
title Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
title_short Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
title_full Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
title_fullStr Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
title_full_unstemmed Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
title_sort edge irregular reflexive labeling for disjoint union of generalized petersen graph
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2018-12-01
description A graph labeling is the task of integers, generally spoken to by whole numbers, to the edges or vertices, or both of a graph. Formally, given a graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> a vertex labeling is a capacity from <i>V</i> to an arrangement of integers. A graph with such a capacity characterized is known as a vertex-labeled graph. Similarly, an edge labeling is an element of <i>E</i> to an arrangement of labels. For this situation, the graph is called an edge-labeled graph. We examine an edge irregular reflexive <i>k</i>-labeling for the disjoint association of the cycle related graphs and decide the correct estimation of the reflexive edge strength for the disjoint association of <i>s</i> isomorphic duplicates of the cycle related graphs to be specific Generalized Peterson graphs.
topic edge irregular reflexive labeling
reflexive edge strength
generalized peterson graphs
url https://www.mdpi.com/2227-7390/6/12/304
work_keys_str_mv AT juanlgguirao edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph
AT sarfrazahmad edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph
AT muhammadkamransiddiqui edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph
AT muhammadibrahim edgeirregularreflexivelabelingfordisjointunionofgeneralizedpetersengraph
_version_ 1725946373036048384