Dwarf Galaxies, MOND, and Relativistic Gravitation
MOND is a phenomenological modification of Newton's law of gravitation which reproduces the dynamics of galaxies, without the need for additional dark matter. This paper reviews the basics of MOND and its application to dwarf galaxies. MOND is generally successful at reproducing stellar velocit...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2010-01-01
|
Series: | Advances in Astronomy |
Online Access: | http://dx.doi.org/10.1155/2010/357342 |
Summary: | MOND is a phenomenological modification of Newton's law of gravitation which reproduces the dynamics of galaxies, without the need for additional dark matter. This paper reviews the basics of MOND and its application to dwarf galaxies. MOND is generally successful at reproducing stellar velocity dispersions in the Milky Way's classical dwarf ellipticals, for reasonable values of the stellar mass-to-light ratio of the galaxies; two discrepantly high mass-to-light ratios may be explained by tidal effects. Recent observations also show MOND describes tidal dwarf galaxies, which form in complex dynamical environments. The application of MOND to galaxy clusters, where it fails to reproduce observed gas temperatures, is also reviewed. Relativistic theories containing MOND in the non-relativistic limit have now been formulated; they all contain new dynamical fields, which may serve as additional sources of gravitation that could reconcile cluster observations with MOND.
Certain limits of these theories can also give the accelerating expansion of the Universe. The standard dark matter cosmology boasts numerous manifest triumphs; however, alternatives should also be pursued as long as outstanding observational issues remain unresolved, including the empirical successes of MOND on galaxy scales and the phenomenology of dark energy. |
---|---|
ISSN: | 1687-7969 1687-7977 |