Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer
Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformu...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-12-01
|
Series: | Future Journal of Pharmaceutical Sciences |
Subjects: | |
Online Access: | https://doi.org/10.1186/s43094-020-00139-6 |
id |
doaj-94228c5de5394f0b80789f90fb356e16 |
---|---|
record_format |
Article |
spelling |
doaj-94228c5de5394f0b80789f90fb356e162020-12-13T12:37:21ZengSpringerOpenFuture Journal of Pharmaceutical Sciences2314-72532020-12-016111110.1186/s43094-020-00139-6Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymerChukwuebuka H. Ozoude0Chukwuemeka P. Azubuike1Modupe O. Ologunagba2Sejoro S. Tonuewa3Cecilia I. Igwilo4Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of LagosDepartment of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of LagosDepartment of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of LagosDepartment of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of LagosDepartment of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of LagosAbstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.https://doi.org/10.1186/s43094-020-00139-6Khaya senegalensis gumMicrospheresMetforminIonic gelationControlled release |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chukwuebuka H. Ozoude Chukwuemeka P. Azubuike Modupe O. Ologunagba Sejoro S. Tonuewa Cecilia I. Igwilo |
spellingShingle |
Chukwuebuka H. Ozoude Chukwuemeka P. Azubuike Modupe O. Ologunagba Sejoro S. Tonuewa Cecilia I. Igwilo Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer Future Journal of Pharmaceutical Sciences Khaya senegalensis gum Microspheres Metformin Ionic gelation Controlled release |
author_facet |
Chukwuebuka H. Ozoude Chukwuemeka P. Azubuike Modupe O. Ologunagba Sejoro S. Tonuewa Cecilia I. Igwilo |
author_sort |
Chukwuebuka H. Ozoude |
title |
Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer |
title_short |
Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer |
title_full |
Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer |
title_fullStr |
Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer |
title_full_unstemmed |
Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer |
title_sort |
formulation and development of metformin-loaded microspheres using khaya senegalensis (meliaceae) gum as co-polymer |
publisher |
SpringerOpen |
series |
Future Journal of Pharmaceutical Sciences |
issn |
2314-7253 |
publishDate |
2020-12-01 |
description |
Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet. |
topic |
Khaya senegalensis gum Microspheres Metformin Ionic gelation Controlled release |
url |
https://doi.org/10.1186/s43094-020-00139-6 |
work_keys_str_mv |
AT chukwuebukahozoude formulationanddevelopmentofmetforminloadedmicrospheresusingkhayasenegalensismeliaceaegumascopolymer AT chukwuemekapazubuike formulationanddevelopmentofmetforminloadedmicrospheresusingkhayasenegalensismeliaceaegumascopolymer AT modupeoologunagba formulationanddevelopmentofmetforminloadedmicrospheresusingkhayasenegalensismeliaceaegumascopolymer AT sejorostonuewa formulationanddevelopmentofmetforminloadedmicrospheresusingkhayasenegalensismeliaceaegumascopolymer AT ceciliaiigwilo formulationanddevelopmentofmetforminloadedmicrospheresusingkhayasenegalensismeliaceaegumascopolymer |
_version_ |
1724384550895747072 |