Summary: | The interdecadal change in the relationship between the East Asia-Pacific (EAP) teleconnection pattern and rainfall over East China during boreal summer (June–August) was investigated using observation and reanalysis datasets during 1951–2018. As proposed in a previous study, summer rainfall in the Yangtze-Huaihe River (YH-R) valley is below (above) normal when a positive (negative) EAP event occurs. Based on the close relationship with the rainfall anomalies, the EAP teleconnection pattern has been widely used in the prediction of summer rainfall variations in the YH-R valley. However, we found that the rainfall anomalies in the YH-R basin associated with the EAP pattern were weaker and less evident after the late 1980s. This finding indicates a decreased relationship between the EAP pattern and YH-R basin summer rainfall after the late 1980s, and a decrease in the quality and skill of seasonal predictions of YH-R basin summer rainfall related to the EAP pattern. This pronounced weakening in the YH-R summer rainfall-EAP pattern connection is attributed to the northeastward displacement of the Japanese action center of the EAP pattern after the late 1980s, which caused weaker anomalous vertical motion and moisture transportation over the YH-R valley. The present research reveals that the interdecadal expansion in the size of the Indo-Pacific warm pool in the late 1980s is likely responsible for the northeastward shift in the Japanese action center of the EAP teleconnection pattern by modulating anomalous convective activities and the northward propagation of the EAP pattern.
|