In Silico Analysis of the Effect of Scrophularia striata Linalool on VacA Protein of Helicobacter Pylori
Introduction: Some plants, such as Scrophularia striata, has been traditionally used for the treatment of infection and ulcer among people living in Zagros District. Previous studies revealed the beneficial effect of hydroalcoholic and water extract of Scrophularia striata on ethanolic induced oxida...
Main Author: | |
---|---|
Format: | Article |
Language: | fas |
Published: |
Ilam University of Medical Sciences
2021-03-01
|
Series: | Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Īlām |
Subjects: | |
Online Access: | http://sjimu.medilam.ac.ir/article-1-6801-en.html |
Summary: | Introduction: Some plants, such as Scrophularia striata, has been traditionally used for the treatment of infection and ulcer among people living in Zagros District. Previous studies revealed the beneficial effect of hydroalcoholic and water extract of Scrophularia striata on ethanolic induced oxidative stress and stomach ulcer in rats. This study aimed to conduct a bioinformatics analysis to investigate the effect of linalool on the prevention of Helicobacter Pylori VacA protein activity.
Materials & Methods: DNA and protein sequences of linalool of Arabidopsis thaliana and VacA gene sequence of Helicobacter pylori were obtained from the NCBI. The alignment of DNA and protein sequence of VacA and linalool was achieved by Clustalw 2 software. Furthermore, all conserved motif and domains were searched using the MEME online software. The phylogenetic tree was drawn by Mega 5 software. The ExpasyPred3D Swiss-Model, and Galaxy Web software were used to predict the third structure and molecular docking based on homology.
Ethics code: IR.UOZ.REC.1399.002
Findings: Linalool protein sequences in all plants have three motifs (100-300 amino acids) based on the NCBI. The VacA protein has three types of the second cytoplasm, membrane, and kinase domain. The best molecular docking model was obtained based on the highest level of interaction (21.0) and accuracy (0.133) between linalool and VacA protein. The results showed that some molecular groups, such as aliphatic, polar, and hydrophilic, were found in both VacA and linalool protein structure. The presence of aliphatic and hydrophilic groups in VacA protein could give it the ability to pass through the cells by lymphocyte cells and caused pathogenesis if they could escape from degradation. On the other hand, the presence of these groups in linalool could block the VacA protein effect.
Discussions & Conclusions: Bioinformatics analysis showed that linalool eliminated the effects of Helicobacter pylori. Furthermore, the results of this study could be used as a scientific basis for future studies to evaluate the effect of each ingredient of Scrophularia striata, especially linalool, on Helicobacter pylori. |
---|---|
ISSN: | 1563-4728 2588-3135 |