In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation
Existing thermal technologies are mainly designed to harvest heat at high temperature, whilst low-grade heat is hardly utilized to date. Here, Wang et al. show an interlocked thermo-mechano feedback mechanism that transfers ambient heat to multimodal locomotions, potentially for soft robotics applic...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-06011-9 |
Summary: | Existing thermal technologies are mainly designed to harvest heat at high temperature, whilst low-grade heat is hardly utilized to date. Here, Wang et al. show an interlocked thermo-mechano feedback mechanism that transfers ambient heat to multimodal locomotions, potentially for soft robotics applications. |
---|---|
ISSN: | 2041-1723 |