Theoretical investigation on the point defect formation energies in beryllium and comparison with experiments
Beryllium will be used as a plasma-facing material for ITER and will retain radioactive tritium fuel under normal operating conditions; this poses a safety issue. Vacancies play one the key roles in the trapping of tritium. This paper presents a first-principles investigation dedicated to point defe...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017-08-01
|
Series: | Nuclear Materials and Energy |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352179116301119 |
Summary: | Beryllium will be used as a plasma-facing material for ITER and will retain radioactive tritium fuel under normal operating conditions; this poses a safety issue. Vacancies play one the key roles in the trapping of tritium. This paper presents a first-principles investigation dedicated to point defect in hcp beryllium. After showing the bulk properties calculated herein agree well with experimental data, we calculated the formation energy of a single-vacancy and henceforth propose an estimate of 0.72 eV. This value is discussed with regard to previous theoretical and experimental studies. |
---|---|
ISSN: | 2352-1791 |