Photoelectrochemical Performance of Smooth TiO2 Nanotube Arrays: Effect of Anodization Temperature and Cleaning Methods

The formation of self-organized titanium dioxide (TiO2) nanotube arrays without bundling or clustering is essential for their high efficiency in photoelectrochemical (PEC) application. The present paper reports on the use of different temperatures to control the specific architecture of nanotube arr...

Full description

Bibliographic Details
Main Authors: Chin Wei Lai, Srimala Sreekantan
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2012/356943
Description
Summary:The formation of self-organized titanium dioxide (TiO2) nanotube arrays without bundling or clustering is essential for their high efficiency in photoelectrochemical (PEC) application. The present paper reports on the use of different temperatures to control the specific architecture of nanotube arrays and effective cleaning techniques to ensure the formation of clean TiO2 nanotube surface. The wall thickness of nanotube arrays could be controlled from 12.5 nm to 37.5 nm through different anodization temperature ranging from 10°C to 80°C. Furthermore, ultrasonic cleaning combined with acetone showed the high-ordered TiO2 nanotube arrays without morphological disorder, bundling, and microcrack problems. Based on the results obtained, a higher PEC response of 1 mA/cm2 and a photoconversion efficiency of 1.3% could be achieved using a wall thickness of 12.5 nm and defect-free TiO2 nanotube arrays for low charge transfer resistance.
ISSN:1110-662X
1687-529X