A note on invariant measures
The aim of the paper is to show that if \(\mathcal{F}\) is a family of continuous transformations of a nonempty compact Hausdorff space \(\Omega\), then there is no \(\mathcal{F}\)-invariant probabilistic Borel measures on \(\Omega\) iff there are \(\varphi_1,\ldots,\varphi_p \in \mathcal{F}\) (for...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2011-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol31/3/art/opuscula_math_3130.pdf |
id |
doaj-95d25d59a31a4d7ea49dd12c18404681 |
---|---|
record_format |
Article |
spelling |
doaj-95d25d59a31a4d7ea49dd12c184046812020-11-24T23:21:33ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742011-01-01313425431http://dx.doi.org/10.7494/OpMath.2011.31.3.4253130A note on invariant measuresPiotr Niemiec0Jagiellonian University ,Institute of Mathematics, ul. Łojasiewicza 6, 30-348 Kraków, PolandThe aim of the paper is to show that if \(\mathcal{F}\) is a family of continuous transformations of a nonempty compact Hausdorff space \(\Omega\), then there is no \(\mathcal{F}\)-invariant probabilistic Borel measures on \(\Omega\) iff there are \(\varphi_1,\ldots,\varphi_p \in \mathcal{F}\) (for some \(p \geq 2\)) and a continuous function \(u:\, \Omega^p \to \mathbb{R}\) such that \(\sum_{\sigma \in S_p} u(x_{\sigma(1)},\ldots ,x_{\sigma(p)}) = 0\) and \(\liminf_{n\to\infty} \frac1n \sum_{k=0}^{n-1} (u \circ \Phi^k)(x_1,\ldots,x_p) \geq 1\) for each \(x_1,\ldots,x_p \in \Omega\), where \(\Phi:\, \Omega^p \ni (x_1,\ldots,x_p) \mapsto (\varphi_1(x_1),\ldots,\varphi_p(x_p)) \in \Omega^p\) and \(\Phi^k\) is the \(k\)-th iterate of \(\Phi\). A modified version of this result in case the family \(\mathcal{F}\) generates an equicontinuous semigroup is proved.http://www.opuscula.agh.edu.pl/vol31/3/art/opuscula_math_3130.pdfinvariant measuresequicontinuous semigroupscompact spaces |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Piotr Niemiec |
spellingShingle |
Piotr Niemiec A note on invariant measures Opuscula Mathematica invariant measures equicontinuous semigroups compact spaces |
author_facet |
Piotr Niemiec |
author_sort |
Piotr Niemiec |
title |
A note on invariant measures |
title_short |
A note on invariant measures |
title_full |
A note on invariant measures |
title_fullStr |
A note on invariant measures |
title_full_unstemmed |
A note on invariant measures |
title_sort |
note on invariant measures |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2011-01-01 |
description |
The aim of the paper is to show that if \(\mathcal{F}\) is a family of continuous transformations of a nonempty compact Hausdorff space \(\Omega\), then there is no \(\mathcal{F}\)-invariant probabilistic Borel measures on \(\Omega\) iff there are \(\varphi_1,\ldots,\varphi_p \in \mathcal{F}\) (for some \(p \geq 2\)) and a continuous function \(u:\, \Omega^p \to \mathbb{R}\) such that \(\sum_{\sigma \in S_p} u(x_{\sigma(1)},\ldots ,x_{\sigma(p)}) = 0\) and \(\liminf_{n\to\infty} \frac1n \sum_{k=0}^{n-1} (u \circ \Phi^k)(x_1,\ldots,x_p) \geq 1\) for each \(x_1,\ldots,x_p \in \Omega\), where \(\Phi:\, \Omega^p \ni (x_1,\ldots,x_p) \mapsto (\varphi_1(x_1),\ldots,\varphi_p(x_p)) \in \Omega^p\) and \(\Phi^k\) is the \(k\)-th iterate of \(\Phi\). A modified version of this result in case the family \(\mathcal{F}\) generates an equicontinuous semigroup is proved. |
topic |
invariant measures equicontinuous semigroups compact spaces |
url |
http://www.opuscula.agh.edu.pl/vol31/3/art/opuscula_math_3130.pdf |
work_keys_str_mv |
AT piotrniemiec anoteoninvariantmeasures AT piotrniemiec noteoninvariantmeasures |
_version_ |
1725571440102604800 |