A note on invariant measures

The aim of the paper is to show that if \(\mathcal{F}\) is a family of continuous transformations of a nonempty compact Hausdorff space \(\Omega\), then there is no \(\mathcal{F}\)-invariant probabilistic Borel measures on \(\Omega\) iff there are \(\varphi_1,\ldots,\varphi_p \in \mathcal{F}\) (for...

Full description

Bibliographic Details
Main Author: Piotr Niemiec
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2011-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol31/3/art/opuscula_math_3130.pdf
id doaj-95d25d59a31a4d7ea49dd12c18404681
record_format Article
spelling doaj-95d25d59a31a4d7ea49dd12c184046812020-11-24T23:21:33ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742011-01-01313425431http://dx.doi.org/10.7494/OpMath.2011.31.3.4253130A note on invariant measuresPiotr Niemiec0Jagiellonian University ,Institute of Mathematics, ul. Łojasiewicza 6, 30-348 Kraków, PolandThe aim of the paper is to show that if \(\mathcal{F}\) is a family of continuous transformations of a nonempty compact Hausdorff space \(\Omega\), then there is no \(\mathcal{F}\)-invariant probabilistic Borel measures on \(\Omega\) iff there are \(\varphi_1,\ldots,\varphi_p \in \mathcal{F}\) (for some \(p \geq 2\)) and a continuous function \(u:\, \Omega^p \to \mathbb{R}\) such that \(\sum_{\sigma \in S_p} u(x_{\sigma(1)},\ldots ,x_{\sigma(p)}) = 0\) and \(\liminf_{n\to\infty} \frac1n \sum_{k=0}^{n-1} (u \circ \Phi^k)(x_1,\ldots,x_p) \geq 1\) for each \(x_1,\ldots,x_p \in \Omega\), where \(\Phi:\, \Omega^p \ni (x_1,\ldots,x_p) \mapsto (\varphi_1(x_1),\ldots,\varphi_p(x_p)) \in \Omega^p\) and \(\Phi^k\) is the \(k\)-th iterate of \(\Phi\). A modified version of this result in case the family \(\mathcal{F}\) generates an equicontinuous semigroup is proved.http://www.opuscula.agh.edu.pl/vol31/3/art/opuscula_math_3130.pdfinvariant measuresequicontinuous semigroupscompact spaces
collection DOAJ
language English
format Article
sources DOAJ
author Piotr Niemiec
spellingShingle Piotr Niemiec
A note on invariant measures
Opuscula Mathematica
invariant measures
equicontinuous semigroups
compact spaces
author_facet Piotr Niemiec
author_sort Piotr Niemiec
title A note on invariant measures
title_short A note on invariant measures
title_full A note on invariant measures
title_fullStr A note on invariant measures
title_full_unstemmed A note on invariant measures
title_sort note on invariant measures
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2011-01-01
description The aim of the paper is to show that if \(\mathcal{F}\) is a family of continuous transformations of a nonempty compact Hausdorff space \(\Omega\), then there is no \(\mathcal{F}\)-invariant probabilistic Borel measures on \(\Omega\) iff there are \(\varphi_1,\ldots,\varphi_p \in \mathcal{F}\) (for some \(p \geq 2\)) and a continuous function \(u:\, \Omega^p \to \mathbb{R}\) such that \(\sum_{\sigma \in S_p} u(x_{\sigma(1)},\ldots ,x_{\sigma(p)}) = 0\) and \(\liminf_{n\to\infty} \frac1n \sum_{k=0}^{n-1} (u \circ \Phi^k)(x_1,\ldots,x_p) \geq 1\) for each \(x_1,\ldots,x_p \in \Omega\), where \(\Phi:\, \Omega^p \ni (x_1,\ldots,x_p) \mapsto (\varphi_1(x_1),\ldots,\varphi_p(x_p)) \in \Omega^p\) and \(\Phi^k\) is the \(k\)-th iterate of \(\Phi\). A modified version of this result in case the family \(\mathcal{F}\) generates an equicontinuous semigroup is proved.
topic invariant measures
equicontinuous semigroups
compact spaces
url http://www.opuscula.agh.edu.pl/vol31/3/art/opuscula_math_3130.pdf
work_keys_str_mv AT piotrniemiec anoteoninvariantmeasures
AT piotrniemiec noteoninvariantmeasures
_version_ 1725571440102604800