In Operando Characterization and Control over Intermittent Light Emission from Molecular Tunnel Junctions via Molecular Backbone Rigidity

Abstract In principle, excitation of surface plasmons by molecular tunnel junctions can be controlled at the molecular level. Stable electrical excitation sources of surface plasmons are therefore desirable. Herein, molecular junctions are reported where tunneling charge carriers excite surface plas...

Full description

Bibliographic Details
Main Authors: Tao Wang, Wei Du, Nikodem Tomczak, Lejia Wang, Christian A. Nijhuis
Format: Article
Language:English
Published: Wiley 2019-10-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.201900390
Description
Summary:Abstract In principle, excitation of surface plasmons by molecular tunnel junctions can be controlled at the molecular level. Stable electrical excitation sources of surface plasmons are therefore desirable. Herein, molecular junctions are reported where tunneling charge carriers excite surface plasmons in the gold bottom electrodes via inelastic tunneling and it is shown that the intermittent light emission (blinking) originates from conformational dynamics of the molecules. The blinking rates, in turn, are controlled by changing the rigidity of the molecular backbone. Power spectral density analysis shows that molecular junctions with flexible aliphatic molecules blink, while junctions with rigid aromatic molecules do not.
ISSN:2198-3844