Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
<p>Human land use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth's surface, with consequences for climate and other ecosystem services. In the future, land use activities are likely to expand and/or intensify further to meet growing...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-11-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/13/5425/2020/gmd-13-5425-2020.pdf |
id |
doaj-9666c511a129494db18e4a5cbd1b6783 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
G. C. Hurtt L. Chini R. Sahajpal S. Frolking B. L. Bodirsky K. Calvin J. C. Doelman J. Fisk J. Fisk S. Fujimori K. Klein Goldewijk K. Klein Goldewijk T. Hasegawa P. Havlik A. Heinimann F. Humpenöder J. Jungclaus J. O. Kaplan J. Kennedy T. Krisztin D. Lawrence P. Lawrence L. Ma O. Mertz J. Pongratz J. Pongratz A. Popp B. Poulter K. Riahi E. Shevliakova E. Stehfest P. Thornton F. N. Tubiello D. P. van Vuuren D. P. van Vuuren X. Zhang |
spellingShingle |
G. C. Hurtt L. Chini R. Sahajpal S. Frolking B. L. Bodirsky K. Calvin J. C. Doelman J. Fisk J. Fisk S. Fujimori K. Klein Goldewijk K. Klein Goldewijk T. Hasegawa P. Havlik A. Heinimann F. Humpenöder J. Jungclaus J. O. Kaplan J. Kennedy T. Krisztin D. Lawrence P. Lawrence L. Ma O. Mertz J. Pongratz J. Pongratz A. Popp B. Poulter K. Riahi E. Shevliakova E. Stehfest P. Thornton F. N. Tubiello D. P. van Vuuren D. P. van Vuuren X. Zhang Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 Geoscientific Model Development |
author_facet |
G. C. Hurtt L. Chini R. Sahajpal S. Frolking B. L. Bodirsky K. Calvin J. C. Doelman J. Fisk J. Fisk S. Fujimori K. Klein Goldewijk K. Klein Goldewijk T. Hasegawa P. Havlik A. Heinimann F. Humpenöder J. Jungclaus J. O. Kaplan J. Kennedy T. Krisztin D. Lawrence P. Lawrence L. Ma O. Mertz J. Pongratz J. Pongratz A. Popp B. Poulter K. Riahi E. Shevliakova E. Stehfest P. Thornton F. N. Tubiello D. P. van Vuuren D. P. van Vuuren X. Zhang |
author_sort |
G. C. Hurtt |
title |
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 |
title_short |
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 |
title_full |
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 |
title_fullStr |
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 |
title_full_unstemmed |
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 |
title_sort |
harmonization of global land use change and management for the period 850–2100 (luh2) for cmip6 |
publisher |
Copernicus Publications |
series |
Geoscientific Model Development |
issn |
1991-959X 1991-9603 |
publishDate |
2020-11-01 |
description |
<p>Human land use activities have resulted in large
changes to the biogeochemical and biophysical properties of the Earth's
surface, with consequences for climate and other ecosystem services. In the
future, land use activities are likely to expand and/or intensify further to
meet growing demands for food, fiber, and energy. As part of the World
Climate Research Program Coupled Model Intercomparison Project (CMIP6), the
international community has developed the next generation of advanced Earth
system models (ESMs) to estimate the combined effects of human activities
(e.g., land use and fossil fuel emissions) on the carbon–climate system. A
new set of historical data based on the History of the Global Environment
database (HYDE), and multiple alternative scenarios of the future
(2015–2100) from Integrated Assessment Model (IAM) teams, is required as
input for these models. With most ESM simulations for CMIP6 now completed,
it is important to document the land use patterns used by those
simulations. Here we present<span id="page5426"/> results from the Land-Use Harmonization 2
(LUH2) project, which smoothly connects updated historical reconstructions
of land use with eight new future projections in the format required for
ESMs. The harmonization strategy estimates the fractional land use patterns,
underlying land use transitions, key agricultural management information,
and resulting secondary lands annually, while minimizing the differences
between the end of the historical reconstruction and IAM initial conditions
and preserving changes depicted by the IAMs in the future. The new approach
builds on a similar effort from CMIP5 and is now provided at higher
resolution (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.25</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">0.25</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="60pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="bd96d133f473e8522ce91d93d4b3729f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-5425-2020-ie00001.svg" width="60pt" height="11pt" src="gmd-13-5425-2020-ie00001.png"/></svg:svg></span></span><span class="inline-formula"><sup>∘</sup></span>) over a longer time domain (850–2100, with
extensions to 2300) with more detail (including multiple crop and pasture
types and associated management practices) using more input datasets
(including Landsat remote sensing data) and updated algorithms (wood harvest
and shifting cultivation); it is assessed via a new diagnostic package. The
new LUH2 products contain <span class="inline-formula">></span> 50 times the information content of
the datasets used in CMIP5 and are designed to enable new and improved
estimates of the combined effects of land use on the global carbon–climate
system.</p> |
url |
https://gmd.copernicus.org/articles/13/5425/2020/gmd-13-5425-2020.pdf |
work_keys_str_mv |
AT gchurtt harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT lchini harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT rsahajpal harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT sfrolking harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT blbodirsky harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT kcalvin harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jcdoelman harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jfisk harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jfisk harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT sfujimori harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT kkleingoldewijk harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT kkleingoldewijk harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT thasegawa harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT phavlik harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT aheinimann harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT fhumpenoder harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jjungclaus harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jokaplan harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jkennedy harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT tkrisztin harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT dlawrence harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT plawrence harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT lma harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT omertz harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jpongratz harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT jpongratz harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT apopp harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT bpoulter harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT kriahi harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT eshevliakova harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT estehfest harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT pthornton harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT fntubiello harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT dpvanvuuren harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT dpvanvuuren harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 AT xzhang harmonizationofgloballandusechangeandmanagementfortheperiod8502100luh2forcmip6 |
_version_ |
1724423694850195456 |
spelling |
doaj-9666c511a129494db18e4a5cbd1b67832020-11-25T04:09:00ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032020-11-01135425546410.5194/gmd-13-5425-2020Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6G. C. Hurtt0L. Chini1R. Sahajpal2S. Frolking3B. L. Bodirsky4K. Calvin5J. C. Doelman6J. Fisk7J. Fisk8S. Fujimori9K. Klein Goldewijk10K. Klein Goldewijk11T. Hasegawa12P. Havlik13A. Heinimann14F. Humpenöder15J. Jungclaus16J. O. Kaplan17J. Kennedy18T. Krisztin19D. Lawrence20P. Lawrence21L. Ma22O. Mertz23J. Pongratz24J. Pongratz25A. Popp26B. Poulter27K. Riahi28E. Shevliakova29E. Stehfest30P. Thornton31F. N. Tubiello32D. P. van Vuuren33D. P. van Vuuren34X. Zhang35Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USADepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USADepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAInstitute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USAPotsdam Institute for Climate Impact Research, Potsdam, GermanyJoint Global Change Research Institute, Pacific Northwest National Laboratory, Richland, WA 99354, USAPBL Netherlands Environmental Assessment Agency, 2594 AV Den Haag, the NetherlandsDepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USADagan Inc., Durham, NH 03824, USANational Institute for Environmental Studies, Tsukuba, Ibaraki 305-0053, JapanPBL Netherlands Environmental Assessment Agency, 2594 AV Den Haag, the NetherlandsCopernicus Institute of Sustainable Development, University of Utrecht, Utrecht, the NetherlandsNational Institute for Environmental Studies, Tsukuba, Ibaraki 305-0053, JapanInternational Institute for Applied Systems Analysis, Laxenburg, AustriaInstitute of Geography and Centre for Development and Environment, University of Bern, Bern, SwitzerlandPotsdam Institute for Climate Impact Research, Potsdam, GermanyMax Planck Institute for Meterology, Hamburg, GermanyDepartment of Earth Sciences, The University of Hong Kong, Hong KongDepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAInternational Institute for Applied Systems Analysis, Laxenburg, AustriaNational Center for Atmospheric Research, Boulder, CO 80305, USANational Center for Atmospheric Research, Boulder, CO 80305, USADepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USADepartment of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, DenmarkMax Planck Institute for Meterology, Hamburg, GermanyDepartment of Geography, Ludwig-Maximilians Universität Munich, Munich, GermanyPotsdam Institute for Climate Impact Research, Potsdam, GermanyNASA Goddard Space Flight Center, Biospheric Sciences Lab, Greenbelt, MD 20771, USAInternational Institute for Applied Systems Analysis, Laxenburg, AustriaGeophysical Fluid Dynamics Lab, Princeton, NJ 08540-6649, USAPBL Netherlands Environmental Assessment Agency, 2594 AV Den Haag, the NetherlandsOak Ridge National Laboratory, Oak Ridge, TN 37830, USAStatistics Division, Food and Agriculture Organization of the United Nations, Rome 00153, ItalyPBL Netherlands Environmental Assessment Agency, 2594 AV Den Haag, the NetherlandsCopernicus Institute of Sustainable Development, University of Utrecht, Utrecht, the NetherlandsAppalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, USA<p>Human land use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth's surface, with consequences for climate and other ecosystem services. In the future, land use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community has developed the next generation of advanced Earth system models (ESMs) to estimate the combined effects of human activities (e.g., land use and fossil fuel emissions) on the carbon–climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, is required as input for these models. With most ESM simulations for CMIP6 now completed, it is important to document the land use patterns used by those simulations. Here we present<span id="page5426"/> results from the Land-Use Harmonization 2 (LUH2) project, which smoothly connects updated historical reconstructions of land use with eight new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land use patterns, underlying land use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds on a similar effort from CMIP5 and is now provided at higher resolution (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.25</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">0.25</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="60pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="bd96d133f473e8522ce91d93d4b3729f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-5425-2020-ie00001.svg" width="60pt" height="11pt" src="gmd-13-5425-2020-ie00001.png"/></svg:svg></span></span><span class="inline-formula"><sup>∘</sup></span>) over a longer time domain (850–2100, with extensions to 2300) with more detail (including multiple crop and pasture types and associated management practices) using more input datasets (including Landsat remote sensing data) and updated algorithms (wood harvest and shifting cultivation); it is assessed via a new diagnostic package. The new LUH2 products contain <span class="inline-formula">></span> 50 times the information content of the datasets used in CMIP5 and are designed to enable new and improved estimates of the combined effects of land use on the global carbon–climate system.</p>https://gmd.copernicus.org/articles/13/5425/2020/gmd-13-5425-2020.pdf |