A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels

<p>Abstract</p> <p>Background</p> <p>In recent years, computer simulation models have supported development of pandemic influenza preparedness policies. However, U.S. policymakers have raised several <it>concerns </it>about the practical use of these models....

Full description

Bibliographic Details
Main Authors: Prieto Diana M, Das Tapas K, Savachkin Alex A, Uribe Andres, Izurieta Ricardo, Malavade Sharad
Format: Article
Language:English
Published: BMC 2012-03-01
Series:BMC Public Health
Online Access:http://www.biomedcentral.com/1471-2458/12/251
id doaj-9685e529138b4ddba88bfb321eaeb7ee
record_format Article
spelling doaj-9685e529138b4ddba88bfb321eaeb7ee2020-11-24T22:50:02ZengBMCBMC Public Health1471-24582012-03-0112125110.1186/1471-2458-12-251A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levelsPrieto Diana MDas Tapas KSavachkin Alex AUribe AndresIzurieta RicardoMalavade Sharad<p>Abstract</p> <p>Background</p> <p>In recent years, computer simulation models have supported development of pandemic influenza preparedness policies. However, U.S. policymakers have raised several <it>concerns </it>about the practical use of these models. In this review paper, we examine the extent to which the current literature already addresses these <it>concerns </it>and identify means of enhancing the current models for higher operational use.</p> <p>Methods</p> <p>We surveyed PubMed and other sources for published research literature on simulation models for influenza pandemic preparedness. We identified 23 models published between 1990 and 2010 that consider single-region (e.g., country, province, city) outbreaks and multi-pronged mitigation strategies. We developed a plan for examination of the literature based on the concerns raised by the policymakers.</p> <p>Results</p> <p>While examining the concerns about the adequacy and validity of data, we found that though the epidemiological data supporting the models appears to be adequate, it should be validated through as many updates as possible during an outbreak. Demographical data must improve its interfaces for access, retrieval, and translation into model parameters. Regarding the concern about credibility and validity of modeling assumptions, we found that the models often simplify reality to reduce computational burden. Such simplifications may be permissible if they do not interfere with the performance assessment of the mitigation strategies. We also agreed with the concern that social behavior is inadequately represented in pandemic influenza models. Our review showed that the models consider only a few social-behavioral aspects including contact rates, withdrawal from work or school due to symptoms appearance or to care for sick relatives, and compliance to social distancing, vaccination, and antiviral prophylaxis. The concern about the degree of accessibility of the models is palpable, since we found three models that are currently accessible by the public while other models are seeking public accessibility. Policymakers would prefer models scalable to any population size that can be downloadable and operable in personal computers. But scaling models to larger populations would often require computational needs that cannot be handled with personal computers and laptops. As a limitation, we state that some existing models could not be included in our review due to their limited available documentation discussing the choice of relevant parameter values.</p> <p>Conclusions</p> <p>To adequately address the concerns of the policymakers, we need continuing model enhancements in critical areas including: updating of epidemiological data during a pandemic, smooth handling of large demographical databases, incorporation of a broader spectrum of social-behavioral aspects, updating information for contact patterns, adaptation of recent methodologies for collecting human mobility data, and improvement of computational efficiency and accessibility.</p> http://www.biomedcentral.com/1471-2458/12/251
collection DOAJ
language English
format Article
sources DOAJ
author Prieto Diana M
Das Tapas K
Savachkin Alex A
Uribe Andres
Izurieta Ricardo
Malavade Sharad
spellingShingle Prieto Diana M
Das Tapas K
Savachkin Alex A
Uribe Andres
Izurieta Ricardo
Malavade Sharad
A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
BMC Public Health
author_facet Prieto Diana M
Das Tapas K
Savachkin Alex A
Uribe Andres
Izurieta Ricardo
Malavade Sharad
author_sort Prieto Diana M
title A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
title_short A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
title_full A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
title_fullStr A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
title_full_unstemmed A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
title_sort systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
publisher BMC
series BMC Public Health
issn 1471-2458
publishDate 2012-03-01
description <p>Abstract</p> <p>Background</p> <p>In recent years, computer simulation models have supported development of pandemic influenza preparedness policies. However, U.S. policymakers have raised several <it>concerns </it>about the practical use of these models. In this review paper, we examine the extent to which the current literature already addresses these <it>concerns </it>and identify means of enhancing the current models for higher operational use.</p> <p>Methods</p> <p>We surveyed PubMed and other sources for published research literature on simulation models for influenza pandemic preparedness. We identified 23 models published between 1990 and 2010 that consider single-region (e.g., country, province, city) outbreaks and multi-pronged mitigation strategies. We developed a plan for examination of the literature based on the concerns raised by the policymakers.</p> <p>Results</p> <p>While examining the concerns about the adequacy and validity of data, we found that though the epidemiological data supporting the models appears to be adequate, it should be validated through as many updates as possible during an outbreak. Demographical data must improve its interfaces for access, retrieval, and translation into model parameters. Regarding the concern about credibility and validity of modeling assumptions, we found that the models often simplify reality to reduce computational burden. Such simplifications may be permissible if they do not interfere with the performance assessment of the mitigation strategies. We also agreed with the concern that social behavior is inadequately represented in pandemic influenza models. Our review showed that the models consider only a few social-behavioral aspects including contact rates, withdrawal from work or school due to symptoms appearance or to care for sick relatives, and compliance to social distancing, vaccination, and antiviral prophylaxis. The concern about the degree of accessibility of the models is palpable, since we found three models that are currently accessible by the public while other models are seeking public accessibility. Policymakers would prefer models scalable to any population size that can be downloadable and operable in personal computers. But scaling models to larger populations would often require computational needs that cannot be handled with personal computers and laptops. As a limitation, we state that some existing models could not be included in our review due to their limited available documentation discussing the choice of relevant parameter values.</p> <p>Conclusions</p> <p>To adequately address the concerns of the policymakers, we need continuing model enhancements in critical areas including: updating of epidemiological data during a pandemic, smooth handling of large demographical databases, incorporation of a broader spectrum of social-behavioral aspects, updating information for contact patterns, adaptation of recent methodologies for collecting human mobility data, and improvement of computational efficiency and accessibility.</p>
url http://www.biomedcentral.com/1471-2458/12/251
work_keys_str_mv AT prietodianam asystematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT dastapask asystematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT savachkinalexa asystematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT uribeandres asystematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT izurietaricardo asystematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT malavadesharad asystematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT prietodianam systematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT dastapask systematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT savachkinalexa systematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT uribeandres systematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT izurietaricardo systematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
AT malavadesharad systematicreviewtoidentifyareasofenhancementsofpandemicsimulationmodelsforoperationaluseatprovincialandlocallevels
_version_ 1725673748164509696