Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations

This study aimed at investigating the physico-mechanical and microstructural properties of a novel edible film based on plasticized semolina flour with different plasticizer (sorbitol/glycerol, 3:1) contents (30, 40, and 50%, w/w). As plasticizer content increased, water vapor and oxygen permeabilit...

Full description

Bibliographic Details
Main Authors: Shima Jafarzadeh, Abd Karim Alias, Fazilah Ariffin, Shahrom Mahmud
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:International Journal of Food Properties
Subjects:
Online Access:http://dx.doi.org/10.1080/10942912.2018.1474056
Description
Summary:This study aimed at investigating the physico-mechanical and microstructural properties of a novel edible film based on plasticized semolina flour with different plasticizer (sorbitol/glycerol, 3:1) contents (30, 40, and 50%, w/w). As plasticizer content increased, water vapor and oxygen permeability, tensile strength, and the elastic modulus of the semolina films decreased, while their water solubility, moisture content, and elongation-at-break increased significantly (p < 0.05). Semolina-based films exhibited excellent absorption of ultraviolet light, and the addition of plasticizers improved the optical properties of the resultant films. Fourier-transform infrared spectroscopy showed no significant effect on the structure of the protein. Thermogravimetric analysis also revealed that increasing plasticizer concentration has no remarkable influence on the magnitude of weight loss. Atomic force microscopy images showed that the surface roughness of the films was influenced by plasticizer concentrations. This study demonstrated that semolina flour protein has the potential to prepare edible films.
ISSN:1094-2912
1532-2386