CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINES

The risk of meningeal worm (Parelaphostrongylus tenuis) infection in white-tailed deer (Odocoileus virginianus) and neurologic disease in moose (Alces alces) in eastern North America is influenced largely by the effects of weather on deer density and gastropod intermediate hosts. Frequent, easy wint...

Full description

Bibliographic Details
Main Author: Murray W. Lankester
Format: Article
Language:English
Published: Lakehead University 2018-01-01
Series:Alces : A Journal Devoted to the Biology and Management of Moose
Subjects:
Online Access:http://alcesjournal.org/index.php/alces/article/view/201/261
id doaj-96977bf3d2b343e3aec4b104ea888d8e
record_format Article
spelling doaj-96977bf3d2b343e3aec4b104ea888d8e2020-11-24T21:19:15ZengLakehead UniversityAlces : A Journal Devoted to the Biology and Management of Moose0835-58510835-58512018-01-0154113CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINESMurray W. Lankester0101-2001 Blue Jay Place, Courtenay, British Columbia, Canada V9N 4A8; RetiredThe risk of meningeal worm (Parelaphostrongylus tenuis) infection in white-tailed deer (Odocoileus virginianus) and neurologic disease in moose (Alces alces) in eastern North America is influenced largely by the effects of weather on deer density and gastropod intermediate hosts. Frequent, easy winters result in high survival and density of deer with a large proportion of young animals that shed up to 3 x more P. tenuis larvae; both greatly increase the production of first-stage larvae. An early spring increases survival of shed larvae by reducing the timing mismatch between the parasite’s “spring rise” and snow melt; larvae deposited into snow experience high mortality. A wetter and longer growing season with moderate temperatures increases the survival of first-stage larvae dispersed in soil, and the density, mobility, and frequency of infected gastropods, including the abundance of infective larvae in them. This weather-enhanced transmission further increases larval output by reducing the proportion of unproductive unisexual infections in deer. High production of larvae and optimal conditions for gastropods increase rates of transmission to co-habiting moose and the occurrence of neurologic disease which is dose-dependent. The density of infected deer at the northern limit of their range is typically limited by winter severity allowing coexistence of deer, moose, and parasite. However, as in Nova Scotia and northwestern Minnesota and adjoining regions, pronounced and prolonged moose declines associated with sustained high deer densities and meningeal worm infection have occurred twice in the past 95 years. These two regions may be prone to extended periods of mild winters and longer, wetter growing seasons that ultimately enhance abundance and transmission of the meningeal worm implicated in moose population declines.http://alcesjournal.org/index.php/alces/article/view/201/261weatherParelaphostrongylus tenuismeningeal wormtransmissionwhite-tailed deerAlcesmoose population declinesmoose sickness
collection DOAJ
language English
format Article
sources DOAJ
author Murray W. Lankester
spellingShingle Murray W. Lankester
CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINES
Alces : A Journal Devoted to the Biology and Management of Moose
weather
Parelaphostrongylus tenuis
meningeal worm
transmission
white-tailed deer
Alces
moose population declines
moose sickness
author_facet Murray W. Lankester
author_sort Murray W. Lankester
title CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINES
title_short CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINES
title_full CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINES
title_fullStr CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINES
title_full_unstemmed CONSIDERING WEATHER-ENHANCED TRANSMISSION OF MENINGEAL WORM, PARELAPHOSTRONGYLUS TENUIS, AND MOOSE DECLINES
title_sort considering weather-enhanced transmission of meningeal worm, parelaphostrongylus tenuis, and moose declines
publisher Lakehead University
series Alces : A Journal Devoted to the Biology and Management of Moose
issn 0835-5851
0835-5851
publishDate 2018-01-01
description The risk of meningeal worm (Parelaphostrongylus tenuis) infection in white-tailed deer (Odocoileus virginianus) and neurologic disease in moose (Alces alces) in eastern North America is influenced largely by the effects of weather on deer density and gastropod intermediate hosts. Frequent, easy winters result in high survival and density of deer with a large proportion of young animals that shed up to 3 x more P. tenuis larvae; both greatly increase the production of first-stage larvae. An early spring increases survival of shed larvae by reducing the timing mismatch between the parasite’s “spring rise” and snow melt; larvae deposited into snow experience high mortality. A wetter and longer growing season with moderate temperatures increases the survival of first-stage larvae dispersed in soil, and the density, mobility, and frequency of infected gastropods, including the abundance of infective larvae in them. This weather-enhanced transmission further increases larval output by reducing the proportion of unproductive unisexual infections in deer. High production of larvae and optimal conditions for gastropods increase rates of transmission to co-habiting moose and the occurrence of neurologic disease which is dose-dependent. The density of infected deer at the northern limit of their range is typically limited by winter severity allowing coexistence of deer, moose, and parasite. However, as in Nova Scotia and northwestern Minnesota and adjoining regions, pronounced and prolonged moose declines associated with sustained high deer densities and meningeal worm infection have occurred twice in the past 95 years. These two regions may be prone to extended periods of mild winters and longer, wetter growing seasons that ultimately enhance abundance and transmission of the meningeal worm implicated in moose population declines.
topic weather
Parelaphostrongylus tenuis
meningeal worm
transmission
white-tailed deer
Alces
moose population declines
moose sickness
url http://alcesjournal.org/index.php/alces/article/view/201/261
work_keys_str_mv AT murraywlankester consideringweatherenhancedtransmissionofmeningealwormparelaphostrongylustenuisandmoosedeclines
_version_ 1726006298728726528