A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime

Nanoparticle agglomeration in the transition regime (e.g. at high pressures or low temperatures) is commonly simulated by population balance models for volume-equivalent spheres or agglomerates with a constant fractal-like structure. However, neglecting the fractal-like morphology of agglomerates or...

Full description

Bibliographic Details
Main Authors: Georgios A. Kelesidis, M. Reza Kholghy
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/14/3882
id doaj-96a2aba080ce4e50a7cb8d73ae48a576
record_format Article
spelling doaj-96a2aba080ce4e50a7cb8d73ae48a5762021-07-23T13:51:36ZengMDPI AGMaterials1996-19442021-07-01143882388210.3390/ma14143882A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition RegimeGeorgios A. Kelesidis0M. Reza Kholghy1Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule Zürich, Sonneggstrasse 3, 8092 Zürich, SwitzerlandDepartment of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, CanadaNanoparticle agglomeration in the transition regime (e.g. at high pressures or low temperatures) is commonly simulated by population balance models for volume-equivalent spheres or agglomerates with a constant fractal-like structure. However, neglecting the fractal-like morphology of agglomerates or their evolving structure during coagulation results in an underestimation or overestimation of the mean mobility diameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, by up to 93 or 49%, repectively. Here, a monodisperse population balance model (MPBM) is interfaced with robust relations derived by mesoscale discrete element modeling (DEM) that account for the realistic agglomerate structure and size distribution during coagulation in the transition regime. For example, the DEM-derived collision frequency, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>, for polydisperse agglomerates is 82 ± 35% larger than that of monodisperse ones and in excellent agreement with measurements of flame-made TiO<sub>2</sub> nanoparticles. Therefore, the number density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>A</mi><mi>g</mi></mrow></msub></mrow></semantics></math></inline-formula>, mean, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>m</mi></msub><mo>,</mo></mrow></semantics></math></inline-formula> and volume-equivalent diameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>v</mi></msub></mrow></semantics></math></inline-formula>, estimated here by coupling the MPBM with this <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> and power laws for the evolving agglomerate morphology are on par with those obtained by DEM during the coagulation of monodisperse and polydisperse primary particles at pressures between 1 and 5 bar. Most importantly, the MPBM-derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>A</mi><mi>g</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>v</mi></msub></mrow></semantics></math></inline-formula> are in excellent agreement with the data for soot coagulation during low temperature sampling. As a result, the computationally affordable MPBM derived here accounting for the realistic nanoparticle agglomerate structure can be readily interfaced with computational fluid dynamics in order to accurately simulate nanoparticle agglomeration at high pressures or low temperatures that are present in engines or during sampling and atmospheric aging.https://www.mdpi.com/1996-1944/14/14/3882agglomerationtransition regimepopulation balance modeldiscrete element modelfractal-like structure
collection DOAJ
language English
format Article
sources DOAJ
author Georgios A. Kelesidis
M. Reza Kholghy
spellingShingle Georgios A. Kelesidis
M. Reza Kholghy
A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime
Materials
agglomeration
transition regime
population balance model
discrete element model
fractal-like structure
author_facet Georgios A. Kelesidis
M. Reza Kholghy
author_sort Georgios A. Kelesidis
title A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime
title_short A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime
title_full A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime
title_fullStr A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime
title_full_unstemmed A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime
title_sort monodisperse population balance model for nanoparticle agglomeration in the transition regime
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2021-07-01
description Nanoparticle agglomeration in the transition regime (e.g. at high pressures or low temperatures) is commonly simulated by population balance models for volume-equivalent spheres or agglomerates with a constant fractal-like structure. However, neglecting the fractal-like morphology of agglomerates or their evolving structure during coagulation results in an underestimation or overestimation of the mean mobility diameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, by up to 93 or 49%, repectively. Here, a monodisperse population balance model (MPBM) is interfaced with robust relations derived by mesoscale discrete element modeling (DEM) that account for the realistic agglomerate structure and size distribution during coagulation in the transition regime. For example, the DEM-derived collision frequency, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>, for polydisperse agglomerates is 82 ± 35% larger than that of monodisperse ones and in excellent agreement with measurements of flame-made TiO<sub>2</sub> nanoparticles. Therefore, the number density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>A</mi><mi>g</mi></mrow></msub></mrow></semantics></math></inline-formula>, mean, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>m</mi></msub><mo>,</mo></mrow></semantics></math></inline-formula> and volume-equivalent diameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>v</mi></msub></mrow></semantics></math></inline-formula>, estimated here by coupling the MPBM with this <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> and power laws for the evolving agglomerate morphology are on par with those obtained by DEM during the coagulation of monodisperse and polydisperse primary particles at pressures between 1 and 5 bar. Most importantly, the MPBM-derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>A</mi><mi>g</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>v</mi></msub></mrow></semantics></math></inline-formula> are in excellent agreement with the data for soot coagulation during low temperature sampling. As a result, the computationally affordable MPBM derived here accounting for the realistic nanoparticle agglomerate structure can be readily interfaced with computational fluid dynamics in order to accurately simulate nanoparticle agglomeration at high pressures or low temperatures that are present in engines or during sampling and atmospheric aging.
topic agglomeration
transition regime
population balance model
discrete element model
fractal-like structure
url https://www.mdpi.com/1996-1944/14/14/3882
work_keys_str_mv AT georgiosakelesidis amonodispersepopulationbalancemodelfornanoparticleagglomerationinthetransitionregime
AT mrezakholghy amonodispersepopulationbalancemodelfornanoparticleagglomerationinthetransitionregime
AT georgiosakelesidis monodispersepopulationbalancemodelfornanoparticleagglomerationinthetransitionregime
AT mrezakholghy monodispersepopulationbalancemodelfornanoparticleagglomerationinthetransitionregime
_version_ 1721287374740127744