Runx1t1 promotes the neuronal differentiation in rat hippocampus

Abstract Background Runt-related transcription factor 1 translocated to 1 (Runx1t1) is one of the members of the myeloid translocation gene family. Our previous work showed that Runx1t1 induced the neuronal differentiation of radial glia cells in vitro. Methods To better uncover the role of Runx1t1...

Full description

Bibliographic Details
Main Authors: Linqing Zou, Haoming Li, Xiao Han, Jianbing Qin, Guoqi Song
Format: Article
Language:English
Published: BMC 2020-04-01
Series:Stem Cell Research & Therapy
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13287-020-01667-x
Description
Summary:Abstract Background Runt-related transcription factor 1 translocated to 1 (Runx1t1) is one of the members of the myeloid translocation gene family. Our previous work showed that Runx1t1 induced the neuronal differentiation of radial glia cells in vitro. Methods To better uncover the role of Runx1t1 in hippocampal neurogenesis, in this study, we further explore its localization and function during the hippocampal neurogenesis. Results Our results showed that insufficient expression of Runx1t1 reduced the neuronal differentiation, and overexpression of Runx1t1 promoted the neuronal differentiation in vitro. We also found that Runx1t1 localized in neurons but not astrocytes both in vivo and in vitro. Furthermore, we found that Runx1t1 overexpression elevated the number of newborn neurons in the hippocampal dentate gyrus. Conclusions Taken together, our results further proved that Runx1t1 could be worked as a regulator in the process of hippocampal neurogenesis.
ISSN:1757-6512