Air Pollution Prediction with Multi-Modal Data and Deep Neural Networks

Air pollution is becoming a rising and serious environmental problem, especially in urban areas affected by an increasing migration rate. The large availability of sensor data enables the adoption of analytical tools to provide decision support capabilities. Employing sensors facilitates air polluti...

Full description

Bibliographic Details
Main Authors: Jovan Kalajdjieski, Eftim Zdravevski, Roberto Corizzo, Petre Lameski, Slobodan Kalajdziski, Ivan Miguel Pires, Nuno M. Garcia, Vladimir Trajkovik
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/24/4142
Description
Summary:Air pollution is becoming a rising and serious environmental problem, especially in urban areas affected by an increasing migration rate. The large availability of sensor data enables the adoption of analytical tools to provide decision support capabilities. Employing sensors facilitates air pollution monitoring, but the lack of predictive capability limits such systems’ potential in practical scenarios. On the other hand, forecasting methods offer the opportunity to predict the future pollution in specific areas, potentially suggesting useful preventive measures. To date, many works tackled the problem of air pollution forecasting, most of which are based on sequence models. These models are trained with raw pollution data and are subsequently utilized to make predictions. This paper proposes a novel approach evaluating four different architectures that utilize camera images to estimate the air pollution in those areas. These images are further enhanced with weather data to boost the classification accuracy. The proposed approach exploits generative adversarial networks combined with data augmentation techniques to mitigate the class imbalance problem. The experiments show that the proposed method achieves robust accuracy of up to 0.88, which is comparable to sequence models and conventional models that utilize air pollution data. This is a remarkable result considering that the historic air pollution data is directly related to the output—future air pollution data, whereas the proposed architecture uses camera images to recognize the air pollution—which is an inherently much more difficult problem.
ISSN:2072-4292