Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland
Soils contain much of Earth’s terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon dynamics and are among ecosystems most widely impacted by land-use. While common practices like grazing, fire, and tillage affect soil properties directly related to soil carbon...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2014/487563 |
id |
doaj-970543d16f3646a785c4432e76cc099e |
---|---|
record_format |
Article |
spelling |
doaj-970543d16f3646a785c4432e76cc099e2020-11-25T00:40:29ZengHindawi LimitedThe Scientific World Journal2356-61401537-744X2014-01-01201410.1155/2014/487563487563Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate GrasslandDevan Allen McGranahan0Aaron L. Daigh1Jessica J. Veenstra2David M. Engle3James R. Miller4Diane M. Debinski5School of Natural Resource Sciences Range Science Program, North Dakota State University, Fargo, ND 58108-6050, USASchool of Natural Resource Sciences Range Science Program, North Dakota State University, Fargo, ND 58108-6050, USANatural Sciences, Flagler College, St. Augustine, FL 32085-1027, USADepartment of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-6013, USANatural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USADepartment of Ecology, Evolution, and Organismal Ecology, Iowa State University, Ames, IA 50011, USASoils contain much of Earth’s terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon dynamics and are among ecosystems most widely impacted by land-use. While common practices like grazing, fire, and tillage affect soil properties directly related to soil carbon dynamics, their magnitude and direction of change vary among ecosystems and with intensity of disturbance. We describe variability in soil organic carbon (SOC) and root biomass—sampled from 0–170 cm and 0–100 cm, respectively—in terms of soil properties, land-use history, current management, and plant community composition using linear regression and multivariate ordination. Despite consistency in average values of SOC and root biomass between our data and data from rangelands worldwide, broad ranges in root biomass and SOC in our data suggest these variables are affected by other site-specific factors. Pastures with a recent history of severe grazing had reduced root biomass and greater bulk density. Ordination suggests greater exotic species richness is associated with lower root biomass but the relationship was not apparent when an invasive species of management concern was specifically tested. We discuss how unexplained variability in belowground properties can complicate measurement and prediction of ecosystem processes such as carbon sequestration.http://dx.doi.org/10.1155/2014/487563 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Devan Allen McGranahan Aaron L. Daigh Jessica J. Veenstra David M. Engle James R. Miller Diane M. Debinski |
spellingShingle |
Devan Allen McGranahan Aaron L. Daigh Jessica J. Veenstra David M. Engle James R. Miller Diane M. Debinski Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland The Scientific World Journal |
author_facet |
Devan Allen McGranahan Aaron L. Daigh Jessica J. Veenstra David M. Engle James R. Miller Diane M. Debinski |
author_sort |
Devan Allen McGranahan |
title |
Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland |
title_short |
Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland |
title_full |
Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland |
title_fullStr |
Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland |
title_full_unstemmed |
Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland |
title_sort |
connecting soil organic carbon and root biomass with land-use and vegetation in temperate grassland |
publisher |
Hindawi Limited |
series |
The Scientific World Journal |
issn |
2356-6140 1537-744X |
publishDate |
2014-01-01 |
description |
Soils contain much of Earth’s terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon dynamics and are among ecosystems most widely impacted by land-use. While common practices like grazing, fire, and tillage affect soil properties directly related to soil carbon dynamics, their magnitude and direction of change vary among ecosystems and with intensity of disturbance. We describe variability in soil organic carbon (SOC) and root biomass—sampled from 0–170 cm and 0–100 cm, respectively—in terms of soil properties, land-use history, current management, and plant community composition using linear regression and multivariate ordination. Despite consistency in average values of SOC and root biomass between our data and data from rangelands worldwide, broad ranges in root biomass and SOC in our data suggest these variables are affected by other site-specific factors. Pastures with a recent history of severe grazing had reduced root biomass and greater bulk density. Ordination suggests greater exotic species richness is associated with lower root biomass but the relationship was not apparent when an invasive species of management concern was specifically tested. We discuss how unexplained variability in belowground properties can complicate measurement and prediction of ecosystem processes such as carbon sequestration. |
url |
http://dx.doi.org/10.1155/2014/487563 |
work_keys_str_mv |
AT devanallenmcgranahan connectingsoilorganiccarbonandrootbiomasswithlanduseandvegetationintemperategrassland AT aaronldaigh connectingsoilorganiccarbonandrootbiomasswithlanduseandvegetationintemperategrassland AT jessicajveenstra connectingsoilorganiccarbonandrootbiomasswithlanduseandvegetationintemperategrassland AT davidmengle connectingsoilorganiccarbonandrootbiomasswithlanduseandvegetationintemperategrassland AT jamesrmiller connectingsoilorganiccarbonandrootbiomasswithlanduseandvegetationintemperategrassland AT dianemdebinski connectingsoilorganiccarbonandrootbiomasswithlanduseandvegetationintemperategrassland |
_version_ |
1725289843339034624 |