Effect Of Ti Powder Addition On The Fabrication Of TiO2 Nanopowders

Sintered samples of Ti added TiO2 nanopowders were fabricated by combined application of magnetic pulsed compaction (MPC) and sintering. The effect of Ti nano powder on density, shrinkage and hardness of the samples were investigated as part of the study. The optimum processing conditions were found...

Full description

Bibliographic Details
Main Authors: Raihanuzzaman R.M., Park H.Y., Ghomashchi R., Kwon T.H., Son H.-T., Hong S.J.
Format: Article
Language:English
Published: Polish Academy of Sciences 2015-06-01
Series:Archives of Metallurgy and Materials
Subjects:
Online Access:http://www.degruyter.com/view/j/amm.2015.60.issue-2/amm-2015-0156/amm-2015-0156.xml?format=INT
Description
Summary:Sintered samples of Ti added TiO2 nanopowders were fabricated by combined application of magnetic pulsed compaction (MPC) and sintering. The effect of Ti nano powder on density, shrinkage and hardness of the samples were investigated as part of the study. The optimum processing conditions were found to be around 0.5 GPa MPC pressure and 1450°C sintering temperature, illustrating maximum density, hardness and minimum shrinkage. High pressure compaction using MPC was found to enhance density with increasing MPC pressure up to 0.9 GPa, and significantly reduce the total shrinkage (about 16% in this case) in the sintered bulks compared to other general processes (about 18%). While sintered samples blended with micro Ti showed presence of microstructural cracks, the samples with 1-2% nano Ti had less or no cracks on them. Overall, the inclusion of nano Ti indicated improvement in mechanical properties of TiO2 nanopowders sintered preforms as opposed to micro Ti-added TiO2.
ISSN:2300-1909