Skew Randi'c matrix and skew Randi'c energy

Let $G$ be a simple graph with an orientation $sigma$‎, ‎which ‎assigns to each edge a direction so that $G^sigma$ becomes a‎ ‎directed graph‎. ‎$G$ is said to be the underlying graph of the‎ ‎directed graph $G^sigma$‎. ‎In this paper‎, ‎we define a weighted skew‎ ‎adjacency matrix with Rand'c...

Full description

Bibliographic Details
Main Authors: Ran Gu, Fei Huang, Xueliang Li
Format: Article
Language:English
Published: University of Isfahan 2016-03-01
Series:Transactions on Combinatorics
Subjects:
Online Access:http://www.combinatorics.ir/article_9513_5dd2d75be3009b50ce663bc68f39cb1e.pdf
id doaj-9750d721d07a42ec8e49a47c983256a7
record_format Article
spelling doaj-9750d721d07a42ec8e49a47c983256a72020-11-24T21:23:51ZengUniversity of IsfahanTransactions on Combinatorics2251-86572251-86652016-03-01511149513Skew Randi'c matrix and skew Randi'c energyRan Gu0Fei Huang1Xueliang Li2Center for Combinatorics, Nankai University, Tianjin 300071, P.R. ChinaCenter for Combinatorics, Nankai University, Tianjin 300071, P.R. ChinaCenter for Combinatorics, Nankai University, Tianjin 300071, ChinaLet $G$ be a simple graph with an orientation $sigma$‎, ‎which ‎assigns to each edge a direction so that $G^sigma$ becomes a‎ ‎directed graph‎. ‎$G$ is said to be the underlying graph of the‎ ‎directed graph $G^sigma$‎. ‎In this paper‎, ‎we define a weighted skew‎ ‎adjacency matrix with Rand'c weight‎, ‎the skew Randi'c matrix ${bf‎ ‎R_S}(G^sigma)$‎, ‎of $G^sigma$ as the real skew symmetric matrix‎ ‎$[(r_s)_{ij}]$ where $(r_s)_{ij} = (d_id_j)^{-frac{1}{2}}$ and‎ ‎$(r_s)_{ji} =‎ -‎(d_id_j)^{-frac{1}{2}}$ if $v_i rightarrow v_j$ is‎ ‎an arc of $G^sigma$‎, ‎otherwise $(r_s)_{ij} = (r_s)_{ji} = 0$‎. ‎We‎ ‎derive some properties of the skew Randi'c energy of an oriented‎ ‎graph‎. ‎Most properties are similar to those for the skew energy of‎ ‎oriented graphs‎. ‎But‎, ‎surprisingly‎, ‎the extremal oriented graphs‎ ‎with maximum or minimum skew Randi'c energy are completely‎ ‎different‎, ‎no longer being some kinds of oriented regular graphs‎.http://www.combinatorics.ir/article_9513_5dd2d75be3009b50ce663bc68f39cb1e.pdforiented graphskew Randi'c matrixskew Randi'c energy
collection DOAJ
language English
format Article
sources DOAJ
author Ran Gu
Fei Huang
Xueliang Li
spellingShingle Ran Gu
Fei Huang
Xueliang Li
Skew Randi'c matrix and skew Randi'c energy
Transactions on Combinatorics
oriented graph
skew Randi'c matrix
skew Randi'c energy
author_facet Ran Gu
Fei Huang
Xueliang Li
author_sort Ran Gu
title Skew Randi'c matrix and skew Randi'c energy
title_short Skew Randi'c matrix and skew Randi'c energy
title_full Skew Randi'c matrix and skew Randi'c energy
title_fullStr Skew Randi'c matrix and skew Randi'c energy
title_full_unstemmed Skew Randi'c matrix and skew Randi'c energy
title_sort skew randi'c matrix and skew randi'c energy
publisher University of Isfahan
series Transactions on Combinatorics
issn 2251-8657
2251-8665
publishDate 2016-03-01
description Let $G$ be a simple graph with an orientation $sigma$‎, ‎which ‎assigns to each edge a direction so that $G^sigma$ becomes a‎ ‎directed graph‎. ‎$G$ is said to be the underlying graph of the‎ ‎directed graph $G^sigma$‎. ‎In this paper‎, ‎we define a weighted skew‎ ‎adjacency matrix with Rand'c weight‎, ‎the skew Randi'c matrix ${bf‎ ‎R_S}(G^sigma)$‎, ‎of $G^sigma$ as the real skew symmetric matrix‎ ‎$[(r_s)_{ij}]$ where $(r_s)_{ij} = (d_id_j)^{-frac{1}{2}}$ and‎ ‎$(r_s)_{ji} =‎ -‎(d_id_j)^{-frac{1}{2}}$ if $v_i rightarrow v_j$ is‎ ‎an arc of $G^sigma$‎, ‎otherwise $(r_s)_{ij} = (r_s)_{ji} = 0$‎. ‎We‎ ‎derive some properties of the skew Randi'c energy of an oriented‎ ‎graph‎. ‎Most properties are similar to those for the skew energy of‎ ‎oriented graphs‎. ‎But‎, ‎surprisingly‎, ‎the extremal oriented graphs‎ ‎with maximum or minimum skew Randi'c energy are completely‎ ‎different‎, ‎no longer being some kinds of oriented regular graphs‎.
topic oriented graph
skew Randi'c matrix
skew Randi'c energy
url http://www.combinatorics.ir/article_9513_5dd2d75be3009b50ce663bc68f39cb1e.pdf
work_keys_str_mv AT rangu skewrandicmatrixandskewrandicenergy
AT feihuang skewrandicmatrixandskewrandicenergy
AT xueliangli skewrandicmatrixandskewrandicenergy
_version_ 1725990863478194176