Development of air tightness prediction method of masonry walls

Recently, the construction of external walls of various blocks, which are externally insulated with mineral wool thermal insulation layer, with ventilated air gap and external finishing (ventilated wall structures) is becoming popular for public and office buildings. These blocks are used without in...

Full description

Bibliographic Details
Main Authors: Geležiūnas Valdemaras, Banionis Karolis, Paukštys Valdas, Kumžienė Jurga
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/32/e3sconf_nsb2020_05009.pdf
id doaj-975fd759831e47e4a9a3de58347168c8
record_format Article
spelling doaj-975fd759831e47e4a9a3de58347168c82021-04-02T13:10:06ZengEDP SciencesE3S Web of Conferences2267-12422020-01-011720500910.1051/e3sconf/202017205009e3sconf_nsb2020_05009Development of air tightness prediction method of masonry wallsGeležiūnas Valdemaras0Banionis Karolis1Paukštys Valdas2Kumžienė Jurga3Kaunas University of Technology, Institute of Architecture and ConstructionKaunas University of Technology, Institute of Architecture and ConstructionKaunas University of Technology, Institute of Architecture and ConstructionKaunas University of Technology, Institute of Architecture and ConstructionRecently, the construction of external walls of various blocks, which are externally insulated with mineral wool thermal insulation layer, with ventilated air gap and external finishing (ventilated wall structures) is becoming popular for public and office buildings. These blocks are used without internal rendering because they have a good interior surface, stable dimensions, and various filling of masonry joints provide an attractive architectural appearance. This reduces the cost and duration of construction work, however, problems with airtightness of such walls often occur. The air can penetrate through blocks or their joints, and the thermal insulation and wind protection layer does not usually provide the required air tightness of the wall. Currently, there are no standard methods to predict the air tightness of such wall, in practice, samples of particular walls are produced and their air permeability is measured at the laboratories. This is a costly job, which is only suitable for a combination of particular building materials. For the broader use of results of laboratory air permeability measurements, a methodology has been developed to predict the air permeability of block masonry walls using experimentally determined air flow resistances of the individual layers. The masonry from blocks, made of ceramic, expanded clay and aerated concrete with various joints, were used for the research; mineral wool boards of various air permeability were used for thermal insulation and wind protection layer. After measuring the air resistance of masonry units, thermal insulation and wind protection boards, the air flow resistances of the walls of different construction were calculated. The comparison of calculated and measured air permeability of wall samples showed that in cases where the nature of air movement (laminar to turbulent) through a single material remains similar with the nature of air movement through the product incorporated in the structure, the calculation and measurement data differ no more than 12-15%. In structures with building products with very different air permeability properties, especially at high thicknesses of air permeable thermal insulation products, air movement parameters change occurs and calculated and measured results have larger differences.https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/32/e3sconf_nsb2020_05009.pdf
collection DOAJ
language English
format Article
sources DOAJ
author Geležiūnas Valdemaras
Banionis Karolis
Paukštys Valdas
Kumžienė Jurga
spellingShingle Geležiūnas Valdemaras
Banionis Karolis
Paukštys Valdas
Kumžienė Jurga
Development of air tightness prediction method of masonry walls
E3S Web of Conferences
author_facet Geležiūnas Valdemaras
Banionis Karolis
Paukštys Valdas
Kumžienė Jurga
author_sort Geležiūnas Valdemaras
title Development of air tightness prediction method of masonry walls
title_short Development of air tightness prediction method of masonry walls
title_full Development of air tightness prediction method of masonry walls
title_fullStr Development of air tightness prediction method of masonry walls
title_full_unstemmed Development of air tightness prediction method of masonry walls
title_sort development of air tightness prediction method of masonry walls
publisher EDP Sciences
series E3S Web of Conferences
issn 2267-1242
publishDate 2020-01-01
description Recently, the construction of external walls of various blocks, which are externally insulated with mineral wool thermal insulation layer, with ventilated air gap and external finishing (ventilated wall structures) is becoming popular for public and office buildings. These blocks are used without internal rendering because they have a good interior surface, stable dimensions, and various filling of masonry joints provide an attractive architectural appearance. This reduces the cost and duration of construction work, however, problems with airtightness of such walls often occur. The air can penetrate through blocks or their joints, and the thermal insulation and wind protection layer does not usually provide the required air tightness of the wall. Currently, there are no standard methods to predict the air tightness of such wall, in practice, samples of particular walls are produced and their air permeability is measured at the laboratories. This is a costly job, which is only suitable for a combination of particular building materials. For the broader use of results of laboratory air permeability measurements, a methodology has been developed to predict the air permeability of block masonry walls using experimentally determined air flow resistances of the individual layers. The masonry from blocks, made of ceramic, expanded clay and aerated concrete with various joints, were used for the research; mineral wool boards of various air permeability were used for thermal insulation and wind protection layer. After measuring the air resistance of masonry units, thermal insulation and wind protection boards, the air flow resistances of the walls of different construction were calculated. The comparison of calculated and measured air permeability of wall samples showed that in cases where the nature of air movement (laminar to turbulent) through a single material remains similar with the nature of air movement through the product incorporated in the structure, the calculation and measurement data differ no more than 12-15%. In structures with building products with very different air permeability properties, especially at high thicknesses of air permeable thermal insulation products, air movement parameters change occurs and calculated and measured results have larger differences.
url https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/32/e3sconf_nsb2020_05009.pdf
work_keys_str_mv AT geleziunasvaldemaras developmentofairtightnesspredictionmethodofmasonrywalls
AT banioniskarolis developmentofairtightnesspredictionmethodofmasonrywalls
AT paukstysvaldas developmentofairtightnesspredictionmethodofmasonrywalls
AT kumzienejurga developmentofairtightnesspredictionmethodofmasonrywalls
_version_ 1721566209004011520