Experimental Study of Nanosecond Laser-Generated Plasma Channels

Generation of plasma-channels by interaction of gas targets with nanosecond laser beams was investigated experimentally. Such laser-generated plasma channels are very promising for subsequent guiding of high peak power femtosecond laser pulses, over several tens of centimeters, as required in laser...

Full description

Bibliographic Details
Main Authors: Tadzio Levato, Michal Nevrkla, Muhammad Fahad Nawaz, Lorenzo Giuffrida, Filip Grepl, Haris Zulic, Jan Pilar, Martin Hanus, Martin Divoky, Antonio Lucianetti, Tomas Mocek, Daniele Margarone
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/12/4082
Description
Summary:Generation of plasma-channels by interaction of gas targets with nanosecond laser beams was investigated experimentally. Such laser-generated plasma channels are very promising for subsequent guiding of high peak power femtosecond laser pulses, over several tens of centimeters, as required in laser wake field electron-acceleration (LWFA). The experimental setup was based on the use of a cylindrical lens (100 mm of focal length) with the aim of proposing a technical solution easy to be integrated into a compact experimental setup for acceleration of multi-GeV electron beams using high peak-power laser systems. A pilot experiment, showing production of asymmetric plasma channels over a length of several millimeters in N and Ar targets with initial neutral-gas atomic density around 5 × 10<sup>19</sup> cm<sup>−3</sup>, is reported. Plasma effective threshold formation was estimated, along with future optimization of the optical setup for a symmetrization of such plasma channel. Scalability of this concept to several tens of centimeters is preliminarily discussed, along with the corresponding critical requirements for an optimal LWFA scheme.
ISSN:2076-3417