Laser-heating wire bonding on MEMS packaging

Making connections is critical in fabrication of MEMS (Micro-Electro-Mechanical Systems). It is also complicated, because the temperature during joining affects both the bond produced and the structure and mechanical properties of the moving parts of the device. Specifications for MEMS packaging req...

Full description

Bibliographic Details
Main Authors: Yuetao Liu, Lining Sun
Format: Article
Language:English
Published: AIP Publishing LLC 2014-02-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4867100
Description
Summary:Making connections is critical in fabrication of MEMS (Micro-Electro-Mechanical Systems). It is also complicated, because the temperature during joining affects both the bond produced and the structure and mechanical properties of the moving parts of the device. Specifications for MEMS packaging require that the temperature not exceed 240 °C. However, usually, temperatures can reach up to 300 °C during conventional thermosonic wire bonding. Such a temperature will change the distribution of dopants in CMOS (Complementary Metal Oxide Semiconductor) circuits. In this paper we propose a new heating process. A semiconductor laser (wavelength 808 nm) is suggested as the thermal source for wire bonding. The thermal field of this setup was analyzed, and specific mathematical models of the field were built. Experimental results show that the heating can be focused on the bonding pad, and that much lower heat conduction occurs, compared with that during the normal heating method. The bond strength increases with increasing laser power. The bond strengths obtained with laser heating are slightly lower than those obtained with the normal heating method, but can still meet the strength requirements for MEMS.
ISSN:2158-3226