Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionment

<p>Atmospheric fine-particle (PM<sub>2.5</sub>) pollution is frequently associated with the formation of particulate nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>), the end product of the oxidation of NO<sub><i>x</i></sub>...

Full description

Bibliographic Details
Main Authors: Y. Chang, Y. Zhang, C. Tian, S. Zhang, X. Ma, F. Cao, X. Liu, W. Zhang, T. Kuhn, M. F. Lehmann
Format: Article
Language:English
Published: Copernicus Publications 2018-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/11647/2018/acp-18-11647-2018.pdf
id doaj-98ca6d5d682f4b8fb90cf3488d65bd99
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Chang
Y. Chang
Y. Chang
Y. Zhang
Y. Zhang
Y. Zhang
C. Tian
S. Zhang
X. Ma
F. Cao
F. Cao
F. Cao
X. Liu
X. Liu
X. Liu
W. Zhang
W. Zhang
W. Zhang
T. Kuhn
M. F. Lehmann
spellingShingle Y. Chang
Y. Chang
Y. Chang
Y. Zhang
Y. Zhang
Y. Zhang
C. Tian
S. Zhang
X. Ma
F. Cao
F. Cao
F. Cao
X. Liu
X. Liu
X. Liu
W. Zhang
W. Zhang
W. Zhang
T. Kuhn
M. F. Lehmann
Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionment
Atmospheric Chemistry and Physics
author_facet Y. Chang
Y. Chang
Y. Chang
Y. Zhang
Y. Zhang
Y. Zhang
C. Tian
S. Zhang
X. Ma
F. Cao
F. Cao
F. Cao
X. Liu
X. Liu
X. Liu
W. Zhang
W. Zhang
W. Zhang
T. Kuhn
M. F. Lehmann
author_sort Y. Chang
title Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionment
title_short Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionment
title_full Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionment
title_fullStr Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionment
title_full_unstemmed Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionment
title_sort nitrogen isotope fractionation during gas-to-particle conversion of no<sub><i>x</i></sub> to no<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based no<sub><i>x</i></sub> source apportionment
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2018-08-01
description <p>Atmospheric fine-particle (PM<sub>2.5</sub>) pollution is frequently associated with the formation of particulate nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>), the end product of the oxidation of NO<sub><i>x</i></sub> gases (NO&thinsp;+&thinsp;NO<sub>2</sub>) in the upper troposphere. The application of stable nitrogen (N) (and oxygen) isotope analyses of <i>p</i>NO<sub>3</sub><sup>−</sup> to constrain NO<sub><i>x</i></sub> source partitioning in the atmosphere requires knowledge of the isotope fractionation during the reactions leading to nitrate formation. Here we determined the <i>δ</i><sup>15</sup>N values of fresh <i>p</i>NO<sub>3</sub><sup>−</sup> (<i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup>) in PM<sub>2.5</sub> at a rural site in northern China, where atmospheric <i>p</i>NO<sub>3</sub><sup>−</sup> can be attributed exclusively to biomass burning. The observed <i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup> (12.17±1.55&thinsp;‰; <i>n</i> = 8) was much higher than the N isotopic source signature of NO<sub><i>x</i></sub> from biomass burning (1.04±4.13&thinsp;‰). The large difference between <i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup> and <i>δ</i><sup>15</sup>N–NO<sub><i>x</i></sub> (Δ(<i>δ</i><sup>15</sup>N)) can be reconciled by the net N isotope effect (<i>ε</i><sub>N</sub>) associated with the gas–particle conversion from NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup>. For the biomass burning site, a mean <i>ε</i><sub>N</sub>( ≈ Δ(<i>δ</i><sup>15</sup>N)) of 10.99±0.74&thinsp;‰ was assessed through a newly developed computational quantum chemistry (CQC) module. <i>ε</i><sub>N</sub> depends on the relative importance of the two dominant N isotope exchange reactions involved (NO<sub>2</sub> reaction with OH versus hydrolysis of dinitrogen pentoxide (N<sub>2</sub>O<sub>5</sub>) with H<sub>2</sub>O) and varies between regions and on a diurnal basis. A second, slightly higher CQC-based mean value for <i>ε</i><sub>N</sub> (15.33±4.90&thinsp;‰) was estimated for an urban site with intense traffic in eastern China and integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates for NO<sub><i>x</i></sub> at this site. Based on the <i>δ</i><sup>15</sup>N values (10.93±3.32&thinsp;‰; <i>n</i> = 43) of ambient <i>p</i>NO<sub>3</sub><sup>−</sup> determined for the urban site, and considering the location-specific estimate for <i>ε</i><sub>N</sub>, our results reveal that the relative contribution of coal combustion and road traffic to urban NO<sub><i>x</i></sub> is 32&thinsp;%&thinsp;±&thinsp;11&thinsp;% and 68&thinsp;%±&thinsp;11&thinsp;%, respectively. This finding agrees well with a regional bottom-up emission inventory of NO<sub><i>x</i></sub>. Moreover, the variation pattern of OH contribution to ambient <i>p</i>NO<sub>3</sub><sup>−</sup> formation calculated by the CQC module is consistent with that simulated by the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), further confirming the robustness of our estimates. Our investigations also show that, without the consideration of the N isotope effect during <i>p</i>NO<sub>3</sub><sup>−</sup> formation, the observed <i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup> at the study site would erroneously imply that NO<sub><i>x</i></sub> is derived almost entirely from coal combustion. Similarly, reanalysis of reported <i>δ</i><sup>15</sup>N–NO<sub>3</sub><sup>−</sup> data throughout China and its neighboring areas suggests that NO<sub><i>x</i></sub> emissions from coal combustion may be substantively overestimated (by  &gt; 30&thinsp;%) when the N isotope fractionation during atmospheric <i>p</i>NO<sub>3</sub><sup>−</sup> formation is neglected.</p>
url https://www.atmos-chem-phys.net/18/11647/2018/acp-18-11647-2018.pdf
work_keys_str_mv AT ychang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT ychang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT ychang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT yzhang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT yzhang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT yzhang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT ctian nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT szhang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT xma nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT fcao nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT fcao nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT fcao nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT xliu nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT xliu nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT xliu nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT wzhang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT wzhang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT wzhang nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT tkuhn nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
AT mflehmann nitrogenisotopefractionationduringgastoparticleconversionofnosubixisubtonosub3subsupsupintheatmosphereimplicationsforisotopebasednosubixisubsourceapportionment
_version_ 1725513281602322432
spelling doaj-98ca6d5d682f4b8fb90cf3488d65bd992020-11-24T23:39:29ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-08-0118116471166110.5194/acp-18-11647-2018Nitrogen isotope fractionation during gas-to-particle conversion of NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup> in the atmosphere – implications for isotope-based NO<sub><i>x</i></sub> source apportionmentY. Chang0Y. Chang1Y. Chang2Y. Zhang3Y. Zhang4Y. Zhang5C. Tian6S. Zhang7X. Ma8F. Cao9F. Cao10F. Cao11X. Liu12X. Liu13X. Liu14W. Zhang15W. Zhang16W. Zhang17T. Kuhn18M. F. Lehmann19Yale–NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaJiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaYale–NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaJiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKey Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Road, Changchun 130102, ChinaKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing 10044, ChinaYale–NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaJiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaYale–NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaJiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaYale–NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, ChinaJiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaAquatic and Isotope Biogeochemistry, Department of Environmental Sciences, University of Basel, 4056 Basel, SwitzerlandAquatic and Isotope Biogeochemistry, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland<p>Atmospheric fine-particle (PM<sub>2.5</sub>) pollution is frequently associated with the formation of particulate nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>), the end product of the oxidation of NO<sub><i>x</i></sub> gases (NO&thinsp;+&thinsp;NO<sub>2</sub>) in the upper troposphere. The application of stable nitrogen (N) (and oxygen) isotope analyses of <i>p</i>NO<sub>3</sub><sup>−</sup> to constrain NO<sub><i>x</i></sub> source partitioning in the atmosphere requires knowledge of the isotope fractionation during the reactions leading to nitrate formation. Here we determined the <i>δ</i><sup>15</sup>N values of fresh <i>p</i>NO<sub>3</sub><sup>−</sup> (<i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup>) in PM<sub>2.5</sub> at a rural site in northern China, where atmospheric <i>p</i>NO<sub>3</sub><sup>−</sup> can be attributed exclusively to biomass burning. The observed <i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup> (12.17±1.55&thinsp;‰; <i>n</i> = 8) was much higher than the N isotopic source signature of NO<sub><i>x</i></sub> from biomass burning (1.04±4.13&thinsp;‰). The large difference between <i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup> and <i>δ</i><sup>15</sup>N–NO<sub><i>x</i></sub> (Δ(<i>δ</i><sup>15</sup>N)) can be reconciled by the net N isotope effect (<i>ε</i><sub>N</sub>) associated with the gas–particle conversion from NO<sub><i>x</i></sub> to NO<sub>3</sub><sup>−</sup>. For the biomass burning site, a mean <i>ε</i><sub>N</sub>( ≈ Δ(<i>δ</i><sup>15</sup>N)) of 10.99±0.74&thinsp;‰ was assessed through a newly developed computational quantum chemistry (CQC) module. <i>ε</i><sub>N</sub> depends on the relative importance of the two dominant N isotope exchange reactions involved (NO<sub>2</sub> reaction with OH versus hydrolysis of dinitrogen pentoxide (N<sub>2</sub>O<sub>5</sub>) with H<sub>2</sub>O) and varies between regions and on a diurnal basis. A second, slightly higher CQC-based mean value for <i>ε</i><sub>N</sub> (15.33±4.90&thinsp;‰) was estimated for an urban site with intense traffic in eastern China and integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates for NO<sub><i>x</i></sub> at this site. Based on the <i>δ</i><sup>15</sup>N values (10.93±3.32&thinsp;‰; <i>n</i> = 43) of ambient <i>p</i>NO<sub>3</sub><sup>−</sup> determined for the urban site, and considering the location-specific estimate for <i>ε</i><sub>N</sub>, our results reveal that the relative contribution of coal combustion and road traffic to urban NO<sub><i>x</i></sub> is 32&thinsp;%&thinsp;±&thinsp;11&thinsp;% and 68&thinsp;%±&thinsp;11&thinsp;%, respectively. This finding agrees well with a regional bottom-up emission inventory of NO<sub><i>x</i></sub>. Moreover, the variation pattern of OH contribution to ambient <i>p</i>NO<sub>3</sub><sup>−</sup> formation calculated by the CQC module is consistent with that simulated by the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), further confirming the robustness of our estimates. Our investigations also show that, without the consideration of the N isotope effect during <i>p</i>NO<sub>3</sub><sup>−</sup> formation, the observed <i>δ</i><sup>15</sup>N–<i>p</i>NO<sub>3</sub><sup>−</sup> at the study site would erroneously imply that NO<sub><i>x</i></sub> is derived almost entirely from coal combustion. Similarly, reanalysis of reported <i>δ</i><sup>15</sup>N–NO<sub>3</sub><sup>−</sup> data throughout China and its neighboring areas suggests that NO<sub><i>x</i></sub> emissions from coal combustion may be substantively overestimated (by  &gt; 30&thinsp;%) when the N isotope fractionation during atmospheric <i>p</i>NO<sub>3</sub><sup>−</sup> formation is neglected.</p>https://www.atmos-chem-phys.net/18/11647/2018/acp-18-11647-2018.pdf