Summary: | Conventional total knee arthroplasty and soft tissue balancing is based on a subjective unquantified assessment, which can lead to imperfect balancing and poor patient outcomes. Five case studies were used to present the functionality of a novel robotic system in allowing intraoperative adjustments based on objective measures for several primary total knee arthroplasty cases. The robotic system allows the surgeon to drive every step of the case, turning the subjective nature of conventional knee replacement into a more objective and scientific approach for restoration of alignment, gap balancing, joint space restoration, femoral rotation, and Q-angle restoration. The robotic system allowed precise intraoperative adjustments, as demonstrated by these cases, and is a promising step towards more personalized total knee arthroplasty made possible by utilizing real-time objective measures.
|