Neuroimaging-based biomarkers for pain: state of the field and current directions
Abstract. Chronic pain is an endemic problem involving both peripheral and brain pathophysiology. Although biomarkers have revolutionized many areas of medicine, biomarkers for pain have remained controversial and relatively underdeveloped. With the realization that biomarkers can reveal pain-causin...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer
2019-08-01
|
Series: | PAIN Reports |
Online Access: | http://journals.lww.com/painrpts/fulltext/10.1097/PR9.0000000000000751 |
id |
doaj-98ee4d032b234f4d832165b51a6d289f |
---|---|
record_format |
Article |
spelling |
doaj-98ee4d032b234f4d832165b51a6d289f2020-11-25T03:16:41ZengWolters KluwerPAIN Reports2471-25312019-08-0144e75110.1097/PR9.0000000000000751201908000-00021Neuroimaging-based biomarkers for pain: state of the field and current directionsMaite M. van der Miesen0Martin A. Lindquist1Tor D. Wager2aInstitute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, the NetherlandsbDepartment of Biostatistics, Johns Hopkins University, Baltimore, MD, USAcDepartment of Psychology and Neuroscience, University of Colorado, Boulder, CO, USAAbstract. Chronic pain is an endemic problem involving both peripheral and brain pathophysiology. Although biomarkers have revolutionized many areas of medicine, biomarkers for pain have remained controversial and relatively underdeveloped. With the realization that biomarkers can reveal pain-causing mechanisms of disease in brain circuits and in the periphery, this situation is poised to change. In particular, brain pathophysiology may be diagnosable with human brain imaging, particularly when imaging is combined with machine learning techniques designed to identify predictive measures embedded in complex data sets. In this review, we explicate the need for brain-based biomarkers for pain, some of their potential uses, and some of the most popular machine learning approaches that have been brought to bear. Then, we evaluate the current state of pain biomarkers developed with several commonly used methods, including structural magnetic resonance imaging, functional magnetic resonance imaging and electroencephalography. The field is in the early stages of biomarker development, but these complementary methodologies have already produced some encouraging predictive models that must be tested more extensively across laboratories and clinical populations.http://journals.lww.com/painrpts/fulltext/10.1097/PR9.0000000000000751 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Maite M. van der Miesen Martin A. Lindquist Tor D. Wager |
spellingShingle |
Maite M. van der Miesen Martin A. Lindquist Tor D. Wager Neuroimaging-based biomarkers for pain: state of the field and current directions PAIN Reports |
author_facet |
Maite M. van der Miesen Martin A. Lindquist Tor D. Wager |
author_sort |
Maite M. van der Miesen |
title |
Neuroimaging-based biomarkers for pain: state of the field and current directions |
title_short |
Neuroimaging-based biomarkers for pain: state of the field and current directions |
title_full |
Neuroimaging-based biomarkers for pain: state of the field and current directions |
title_fullStr |
Neuroimaging-based biomarkers for pain: state of the field and current directions |
title_full_unstemmed |
Neuroimaging-based biomarkers for pain: state of the field and current directions |
title_sort |
neuroimaging-based biomarkers for pain: state of the field and current directions |
publisher |
Wolters Kluwer |
series |
PAIN Reports |
issn |
2471-2531 |
publishDate |
2019-08-01 |
description |
Abstract. Chronic pain is an endemic problem involving both peripheral and brain pathophysiology. Although biomarkers have revolutionized many areas of medicine, biomarkers for pain have remained controversial and relatively underdeveloped. With the realization that biomarkers can reveal pain-causing mechanisms of disease in brain circuits and in the periphery, this situation is poised to change. In particular, brain pathophysiology may be diagnosable with human brain imaging, particularly when imaging is combined with machine learning techniques designed to identify predictive measures embedded in complex data sets. In this review, we explicate the need for brain-based biomarkers for pain, some of their potential uses, and some of the most popular machine learning approaches that have been brought to bear. Then, we evaluate the current state of pain biomarkers developed with several commonly used methods, including structural magnetic resonance imaging, functional magnetic resonance imaging and electroencephalography. The field is in the early stages of biomarker development, but these complementary methodologies have already produced some encouraging predictive models that must be tested more extensively across laboratories and clinical populations. |
url |
http://journals.lww.com/painrpts/fulltext/10.1097/PR9.0000000000000751 |
work_keys_str_mv |
AT maitemvandermiesen neuroimagingbasedbiomarkersforpainstateofthefieldandcurrentdirections AT martinalindquist neuroimagingbasedbiomarkersforpainstateofthefieldandcurrentdirections AT tordwager neuroimagingbasedbiomarkersforpainstateofthefieldandcurrentdirections |
_version_ |
1724634702235566080 |