The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet

<p>Perennial snow, or firn, covers 80&thinsp;% of the Greenland ice sheet and has the capacity to retain surface meltwater, influencing the ice sheet mass balance and contribution to sea-level rise. Multilayer firn models are traditionally used to simulate firn processes and estimate meltw...

Full description

Bibliographic Details
Main Authors: B. Vandecrux, R. Mottram, P. L. Langen, R. S. Fausto, M. Olesen, C. M. Stevens, V. Verjans, A. Leeson, S. Ligtenberg, P. Kuipers Munneke, S. Marchenko, W. van Pelt, C. R. Meyer, S. B. Simonsen, A. Heilig, S. Samimi, S. Marshall, H. Machguth, M. MacFerrin, M. Niwano, O. Miller, C. I. Voss, J. E. Box
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/14/3785/2020/tc-14-3785-2020.pdf
id doaj-992d17a9d1f7468b8ece75cc0a5d41fe
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author B. Vandecrux
B. Vandecrux
R. Mottram
P. L. Langen
P. L. Langen
R. S. Fausto
M. Olesen
C. M. Stevens
V. Verjans
A. Leeson
S. Ligtenberg
S. Ligtenberg
P. Kuipers Munneke
S. Marchenko
W. van Pelt
C. R. Meyer
S. B. Simonsen
A. Heilig
S. Samimi
S. Marshall
H. Machguth
M. MacFerrin
M. Niwano
O. Miller
C. I. Voss
J. E. Box
spellingShingle B. Vandecrux
B. Vandecrux
R. Mottram
P. L. Langen
P. L. Langen
R. S. Fausto
M. Olesen
C. M. Stevens
V. Verjans
A. Leeson
S. Ligtenberg
S. Ligtenberg
P. Kuipers Munneke
S. Marchenko
W. van Pelt
C. R. Meyer
S. B. Simonsen
A. Heilig
S. Samimi
S. Marshall
H. Machguth
M. MacFerrin
M. Niwano
O. Miller
C. I. Voss
J. E. Box
The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
The Cryosphere
author_facet B. Vandecrux
B. Vandecrux
R. Mottram
P. L. Langen
P. L. Langen
R. S. Fausto
M. Olesen
C. M. Stevens
V. Verjans
A. Leeson
S. Ligtenberg
S. Ligtenberg
P. Kuipers Munneke
S. Marchenko
W. van Pelt
C. R. Meyer
S. B. Simonsen
A. Heilig
S. Samimi
S. Marshall
H. Machguth
M. MacFerrin
M. Niwano
O. Miller
C. I. Voss
J. E. Box
author_sort B. Vandecrux
title The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
title_short The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
title_full The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
title_fullStr The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
title_full_unstemmed The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
title_sort firn meltwater retention model intercomparison project (retmip): evaluation of nine firn models at four weather station sites on the greenland ice sheet
publisher Copernicus Publications
series The Cryosphere
issn 1994-0416
1994-0424
publishDate 2020-11-01
description <p>Perennial snow, or firn, covers 80&thinsp;% of the Greenland ice sheet and has the capacity to retain surface meltwater, influencing the ice sheet mass balance and contribution to sea-level rise. Multilayer firn models are traditionally used to simulate firn processes and estimate meltwater retention. We present, intercompare and evaluate outputs from nine firn models at four sites that represent the ice sheet's dry snow, percolation, ice slab and firn aquifer areas. The models are forced by mass and energy fluxes derived from automatic weather stations and compared to firn density, temperature and meltwater percolation depth observations. Models agree relatively well at the dry-snow site while elsewhere their meltwater infiltration schemes lead to marked differences in simulated firn characteristics. Models accounting for deep meltwater percolation overestimate percolation depth and firn temperature at the percolation and ice slab sites but accurately simulate recharge of the firn aquifer. Models using Darcy's law and bucket schemes compare favorably to observed firn temperature and meltwater percolation depth at the percolation site, but only the Darcy models accurately simulate firn temperature and percolation at the ice slab site. Despite good performance at certain locations, no single model currently simulates meltwater infiltration adequately at all sites. The model spread in estimated meltwater<span id="page3786"/> retention and runoff increases with increasing meltwater input. The highest runoff was calculated at the KAN_U site in 2012, when average total runoff across models (<span class="inline-formula">±2<i>σ</i></span>) was <span class="inline-formula">353±610</span>&thinsp;mm&thinsp;w.e. (water equivalent), about <span class="inline-formula">27±48</span>&thinsp;% of the surface meltwater input. We identify potential causes for the model spread and the mismatch with observations and provide recommendations for future model development and firn investigation.</p>
url https://tc.copernicus.org/articles/14/3785/2020/tc-14-3785-2020.pdf
work_keys_str_mv AT bvandecrux thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT bvandecrux thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT rmottram thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT pllangen thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT pllangen thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT rsfausto thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT molesen thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT cmstevens thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT vverjans thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT aleeson thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT sligtenberg thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT sligtenberg thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT pkuipersmunneke thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT smarchenko thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT wvanpelt thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT crmeyer thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT sbsimonsen thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT aheilig thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT ssamimi thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT smarshall thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT hmachguth thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT mmacferrin thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT mniwano thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT omiller thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT civoss thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT jebox thefirnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT bvandecrux firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT bvandecrux firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT rmottram firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT pllangen firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT pllangen firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT rsfausto firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT molesen firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT cmstevens firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT vverjans firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT aleeson firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT sligtenberg firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT sligtenberg firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT pkuipersmunneke firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT smarchenko firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT wvanpelt firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT crmeyer firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT sbsimonsen firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT aheilig firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT ssamimi firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT smarshall firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT hmachguth firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT mmacferrin firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT mniwano firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT omiller firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT civoss firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
AT jebox firnmeltwaterretentionmodelintercomparisonprojectretmipevaluationofninefirnmodelsatfourweatherstationsitesonthegreenlandicesheet
_version_ 1724452990829461504
spelling doaj-992d17a9d1f7468b8ece75cc0a5d41fe2020-11-25T03:59:47ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242020-11-01143785381010.5194/tc-14-3785-2020The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheetB. Vandecrux0B. Vandecrux1R. Mottram2P. L. Langen3P. L. Langen4R. S. Fausto5M. Olesen6C. M. Stevens7V. Verjans8A. Leeson9S. Ligtenberg10S. Ligtenberg11P. Kuipers Munneke12S. Marchenko13W. van Pelt14C. R. Meyer15S. B. Simonsen16A. Heilig17S. Samimi18S. Marshall19H. Machguth20M. MacFerrin21M. Niwano22O. Miller23C. I. Voss24J. E. Box25Geological Survey of Denmark and Greenland, Copenhagen, DenmarkDepartment of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, DenmarkDanish Meteorological Institute, Copenhagen, DenmarkDanish Meteorological Institute, Copenhagen, DenmarkDepartment of Environmental Science, iClimate, Aarhus University, Roskilde, DenmarkGeological Survey of Denmark and Greenland, Copenhagen, DenmarkDanish Meteorological Institute, Copenhagen, DenmarkDepartment of Earth and Space Sciences, University of Washington, Seattle, WA, USALancaster Environment Centre, Lancaster University, Lancaster, UKLancaster Environment Centre, Lancaster University, Lancaster, UKInstitute for Marine and Atmospheric research, Utrecht University, Utrecht, the NetherlandsWeather Impact, Amersfoort, the NetherlandsInstitute for Marine and Atmospheric research, Utrecht University, Utrecht, the NetherlandsDepartment of Earth Sciences, Uppsala University, Uppsala, SwedenDepartment of Earth Sciences, Uppsala University, Uppsala, SwedenThayer School of Engineering, Dartmouth College, Hanover, NH, USANational Space Institute, Technical University of Denmark, Kgs. Lyngby, DenmarkDepartment of Earth and Environmental Sciences, Ludwig Maximilian University, Munich, GermanyDepartment of Geography, University of Calgary, Calgary, AB, CanadaDepartment of Geography, University of Calgary, Calgary, AB, CanadaDepartment of Geosciences, University of Fribourg, Fribourg, SwitzerlandCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USAMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, 305-0052 JapanUS Geological Survey, Utah Water Science Center, Salt Lake City, UT, USAUS Geological Survey, Menlo Park, CA, USAGeological Survey of Denmark and Greenland, Copenhagen, Denmark<p>Perennial snow, or firn, covers 80&thinsp;% of the Greenland ice sheet and has the capacity to retain surface meltwater, influencing the ice sheet mass balance and contribution to sea-level rise. Multilayer firn models are traditionally used to simulate firn processes and estimate meltwater retention. We present, intercompare and evaluate outputs from nine firn models at four sites that represent the ice sheet's dry snow, percolation, ice slab and firn aquifer areas. The models are forced by mass and energy fluxes derived from automatic weather stations and compared to firn density, temperature and meltwater percolation depth observations. Models agree relatively well at the dry-snow site while elsewhere their meltwater infiltration schemes lead to marked differences in simulated firn characteristics. Models accounting for deep meltwater percolation overestimate percolation depth and firn temperature at the percolation and ice slab sites but accurately simulate recharge of the firn aquifer. Models using Darcy's law and bucket schemes compare favorably to observed firn temperature and meltwater percolation depth at the percolation site, but only the Darcy models accurately simulate firn temperature and percolation at the ice slab site. Despite good performance at certain locations, no single model currently simulates meltwater infiltration adequately at all sites. The model spread in estimated meltwater<span id="page3786"/> retention and runoff increases with increasing meltwater input. The highest runoff was calculated at the KAN_U site in 2012, when average total runoff across models (<span class="inline-formula">±2<i>σ</i></span>) was <span class="inline-formula">353±610</span>&thinsp;mm&thinsp;w.e. (water equivalent), about <span class="inline-formula">27±48</span>&thinsp;% of the surface meltwater input. We identify potential causes for the model spread and the mismatch with observations and provide recommendations for future model development and firn investigation.</p>https://tc.copernicus.org/articles/14/3785/2020/tc-14-3785-2020.pdf