Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn1 − xSe via anisotropy and vacancy synergy

Abstract The morphology and composition are two key factors to determine the thermoelectric performance of aqueously synthesized tin selenide (SnSe) crystals; however, their controlling is still under exploring. In this study, we report a high figure‐of‐merit (ZT) of ∼1.5 at 823 K in p‐type polycrys...

Full description

Bibliographic Details
Main Authors: Xiao‐Lei Shi, Wei‐Di Liu, Ang‐Yin Wu, Van T. Nguyen, Han Gao, Qiang Sun, Raza Moshwan, Jin Zou, Zhi‐Gang Chen
Format: Article
Language:English
Published: Wiley 2020-11-01
Series:InfoMat
Subjects:
Online Access:https://doi.org/10.1002/inf2.12057
Description
Summary:Abstract The morphology and composition are two key factors to determine the thermoelectric performance of aqueously synthesized tin selenide (SnSe) crystals; however, their controlling is still under exploring. In this study, we report a high figure‐of‐merit (ZT) of ∼1.5 at 823 K in p‐type polycrystalline Sn1 − xSe resulted from a synergy of morphology control and vacancy optimization, realized by carefully tuning the sodium hydroxide (NaOH) concentration during solvothermal synthesis. After a comprehensive investigation on various NaOH concentrations, it was found that an optimized NaOH amount of 10 mL with a concentration of 10 mol L−1 can simultaneously achieve a large average crystal size and a high Sn vacancy concentration of ∼2.5%. The large microplate‐like crystals lead to a considerable anisotropy in the sintered pellets, and the high Sn vacancy level contributes to an optimum hole concentration to the level of ∼2.3 × 1019 cm−3, and in turn a high power factor of ∼7.4 μW cm−1 K−2 at 823 K, measured along the direction perpendicular to the sintering pressure. In addition, a low thermal conductivity of ∼0.41 W m−1 K−1 is achieved by effective phonon scattering at localized crystal imperfections including lattice distortions, grain boundaries, and vacancy domains, as observed by detailed structural characterizations. Furthermore, a competitive compressive strength of ∼52.1 MPa can be achieved along the direction of high thermoelectric performance, indicating a mechanically robust feature. This study provides a new avenue in achieving high thermoelectric performance in SnSe‐based thermoelectric materials.
ISSN:2567-3165