Immunophenotyping of the PD-L1-positive cells in angioimmunoblastic T cell lymphoma and Hodgkin disease

Abstract Objective Programmed death-1 (PD-1) and its ligand PD-L1 are now used as predictive biomarkers to guide clinical decisions. Precise characterization of PD-L1-positive cells may contribute to our knowledge of which patients derive benefit from the PD-L1 blockade therapy. Results To address t...

Full description

Bibliographic Details
Main Authors: Markus Tiemann, Vera Samoilova, Dmitri Atiakshin, Igor Buchwalow
Format: Article
Language:English
Published: BMC 2020-03-01
Series:BMC Research Notes
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13104-020-04975-w
Description
Summary:Abstract Objective Programmed death-1 (PD-1) and its ligand PD-L1 are now used as predictive biomarkers to guide clinical decisions. Precise characterization of PD-L1-positive cells may contribute to our knowledge of which patients derive benefit from the PD-L1 blockade therapy. Results To address this issue, we performed immunophenotyping of PD-L1-positive cells in Hodgkin lymphoma and in angioimmunoblastic T cell lymphoma (AITL) employing multiple immunofluorescent immunolabeling. We found that PD-L1-positive cells and PD-1-positive cells both in Hodgkin lymphoma and in AITL belong to two completely different cell lineages. In both lymphomas, PD-1 was found exclusively in T-lymphocytes, whereas PD-L1 was revealed in the tumor microenvironment cells including macrophages. PD-L1 was also detected in CD30-positive cells in Hodgkin lymphoma but not in AITL. The marker of B-cell lineage, CD20, was not detectable in PD-L1-positive cells both in AITL and in Hodgkin. Our study highlights the importance of comprehensive assessment of PD-1/PD-L1 regulatory pathways for employing PD-L1 as a predictive biomarker in clinical practice. PD-L1-antibody therapy is proven in Hodgkin lymphoma. Comparative immunophenotyping of the PD-1/PD-L1 axis provides a support for attempts to prove this principle also for AITL.
ISSN:1756-0500