An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary
<p>We study the existence of solutions an <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary for <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math> depending on the...
Format: | Article |
---|---|
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/93163 |
id |
doaj-9a1a7bbc58864c52b294e11c9a2bff6d |
---|---|
record_format |
Article |
spelling |
doaj-9a1a7bbc58864c52b294e11c9a2bff6d2020-11-24T20:43:09ZengHindawi LimitedAbstract and Applied Analysis1085-33752006-01-012006An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary<p>We study the existence of solutions an <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary for <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math> depending on the radius <mml:math alttext="$f$"> <mml:mi>f</mml:mi> </mml:math>. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation <mml:math alttext="$N(a)={L}/{sqrt{2}}$"> <mml:mi>N</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> </mml:mrow></mml:mrow> </mml:math>, where <mml:math alttext="$N:mathcal{A}subset mathbb{R}^+ ightarrow mathbb{R}$"> <mml:mi>N</mml:mi><mml:mo>:</mml:mo><mml:mi>𝒜</mml:mi><mml:mo>⊂</mml:mo><mml:msup> <mml:mi>ℝ</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>→</mml:mo><mml:mi>ℝ</mml:mi> </mml:math> is a function depending on <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/93163 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
title |
An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
spellingShingle |
An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary Abstract and Applied Analysis |
title_short |
An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_full |
An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_fullStr |
An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_full_unstemmed |
An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary |
title_sort |
<mml:math alttext="$h$"> <mml:mi>h</mml:mi> </mml:math>-system for a revolution surface without boundary |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 |
publishDate |
2006-01-01 |
description |
<p>We study the existence of solutions an <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary for <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math> depending on the radius <mml:math alttext="$f$"> <mml:mi>f</mml:mi> </mml:math>. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation <mml:math alttext="$N(a)={L}/{sqrt{2}}$"> <mml:mi>N</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> </mml:mrow></mml:mrow> </mml:math>, where <mml:math alttext="$N:mathcal{A}subset mathbb{R}^+ ightarrow mathbb{R}$"> <mml:mi>N</mml:mi><mml:mo>:</mml:mo><mml:mi>𝒜</mml:mi><mml:mo>⊂</mml:mo><mml:msup> <mml:mi>ℝ</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>→</mml:mo><mml:mi>ℝ</mml:mi> </mml:math> is a function depending on <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>.</p> |
url |
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/93163 |
_version_ |
1716820436643217408 |