New words in human mutagenesis
<p>Abstract</p> <p>Background</p> <p>The substitution rates within different nucleotide contexts are subject to varying levels of bias. The most well known example of such bias is the excess of C to T (C > T) mutations in CpG (CG) dinucleotides. The molecular mechani...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-06-01
|
Series: | BMC Bioinformatics |
Online Access: | http://www.biomedcentral.com/1471-2105/12/268 |
id |
doaj-9a241946dd9b40aa934c42f1ed918458 |
---|---|
record_format |
Article |
spelling |
doaj-9a241946dd9b40aa934c42f1ed9184582020-11-25T01:32:31ZengBMCBMC Bioinformatics1471-21052011-06-0112126810.1186/1471-2105-12-268New words in human mutagenesisAlexeevski Andrei VMitrofanov Sergey IPanchin Alexander YSpirin Sergey APanchin Yuri V<p>Abstract</p> <p>Background</p> <p>The substitution rates within different nucleotide contexts are subject to varying levels of bias. The most well known example of such bias is the excess of C to T (C > T) mutations in CpG (CG) dinucleotides. The molecular mechanisms underlying this bias are important factors in human genome evolution and cancer development. The discovery of other nucleotide contexts that have profound effects on substitution rates can improve our understanding of how mutations are acquired, and why mutation hotspots exist.</p> <p>Results</p> <p>We compared rates of inherited mutations in 1-4 bp nucleotide contexts using reconstructed ancestral states of human single nucleotide polymorphisms (SNPs) from intergenic regions. Chimp and orangutan genomic sequences were used as outgroups. We uncovered 3.5 and 3.3-fold excesses of T > C mutations in the second position of ATTG and ATAG words, respectively, and a 3.4-fold excess of A > C mutations in the first position of the ACAA word.</p> <p>Conclusions</p> <p>Although all the observed biases are less pronounced than the 5.1-fold excess of C > T mutations in CG dinucleotides, the three 4 bp mutation contexts mentioned above (and their complementary contexts) are well distinguished from all other mutation contexts. This provides a challenge to discover the underlying mechanisms responsible for the observed excesses of mutations.</p> http://www.biomedcentral.com/1471-2105/12/268 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alexeevski Andrei V Mitrofanov Sergey I Panchin Alexander Y Spirin Sergey A Panchin Yuri V |
spellingShingle |
Alexeevski Andrei V Mitrofanov Sergey I Panchin Alexander Y Spirin Sergey A Panchin Yuri V New words in human mutagenesis BMC Bioinformatics |
author_facet |
Alexeevski Andrei V Mitrofanov Sergey I Panchin Alexander Y Spirin Sergey A Panchin Yuri V |
author_sort |
Alexeevski Andrei V |
title |
New words in human mutagenesis |
title_short |
New words in human mutagenesis |
title_full |
New words in human mutagenesis |
title_fullStr |
New words in human mutagenesis |
title_full_unstemmed |
New words in human mutagenesis |
title_sort |
new words in human mutagenesis |
publisher |
BMC |
series |
BMC Bioinformatics |
issn |
1471-2105 |
publishDate |
2011-06-01 |
description |
<p>Abstract</p> <p>Background</p> <p>The substitution rates within different nucleotide contexts are subject to varying levels of bias. The most well known example of such bias is the excess of C to T (C > T) mutations in CpG (CG) dinucleotides. The molecular mechanisms underlying this bias are important factors in human genome evolution and cancer development. The discovery of other nucleotide contexts that have profound effects on substitution rates can improve our understanding of how mutations are acquired, and why mutation hotspots exist.</p> <p>Results</p> <p>We compared rates of inherited mutations in 1-4 bp nucleotide contexts using reconstructed ancestral states of human single nucleotide polymorphisms (SNPs) from intergenic regions. Chimp and orangutan genomic sequences were used as outgroups. We uncovered 3.5 and 3.3-fold excesses of T > C mutations in the second position of ATTG and ATAG words, respectively, and a 3.4-fold excess of A > C mutations in the first position of the ACAA word.</p> <p>Conclusions</p> <p>Although all the observed biases are less pronounced than the 5.1-fold excess of C > T mutations in CG dinucleotides, the three 4 bp mutation contexts mentioned above (and their complementary contexts) are well distinguished from all other mutation contexts. This provides a challenge to discover the underlying mechanisms responsible for the observed excesses of mutations.</p> |
url |
http://www.biomedcentral.com/1471-2105/12/268 |
work_keys_str_mv |
AT alexeevskiandreiv newwordsinhumanmutagenesis AT mitrofanovsergeyi newwordsinhumanmutagenesis AT panchinalexandery newwordsinhumanmutagenesis AT spirinsergeya newwordsinhumanmutagenesis AT panchinyuriv newwordsinhumanmutagenesis |
_version_ |
1725081522660179968 |