Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR method
In this study, CdxZn1-xS/PVA nanocomposites have been grown within polyvinyl alcohol (PVA) polymer matrix using the combined sorption of the cations by the successive ionic layer adsorption and reaction (SILAR) method. The effects of the different amount of Cd2+ and Zn2+ ions depending on the × valu...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-09-01
|
Series: | Results in Physics |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211379720317472 |
id |
doaj-9a27bd05b6d44e20b64e132a3c4ccb6d |
---|---|
record_format |
Article |
spelling |
doaj-9a27bd05b6d44e20b64e132a3c4ccb6d2020-11-25T03:28:57ZengElsevierResults in Physics2211-37972020-09-0118103280Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR methodMustafa Bayram Muradov0Lala Rasim Gahramanli1Ofeliya Oqtay Balayeva2Ilyas Namaz Nasibov3Goncha Malik Eyvazova4Imameddin Rajabali Amiraslanov5Zoxrab Adalat Aghamaliyev6Baku State University, Nano Research Center, Z. Khalilov Str., 23, AZ-1148, AzerbaijanBaku State University, Nano Research Center, Z. Khalilov Str., 23, AZ-1148, Azerbaijan; Corresponding author.Baku State University, Dep.of Chemistry, Z. Khalilov Str., 23, AZ-1148, AzerbaijanBaku State University, Nano Research Center, Z. Khalilov Str., 23, AZ-1148, AzerbaijanBaku State University, Nano Research Center, Z. Khalilov Str., 23, AZ-1148, AzerbaijanBaku State University, Nano Research Center, Z. Khalilov Str., 23, AZ-1148, AzerbaijanBaku State University, Nano Research Center, Z. Khalilov Str., 23, AZ-1148, AzerbaijanIn this study, CdxZn1-xS/PVA nanocomposites have been grown within polyvinyl alcohol (PVA) polymer matrix using the combined sorption of the cations by the successive ionic layer adsorption and reaction (SILAR) method. The effects of the different amount of Cd2+ and Zn2+ ions depending on the × value in CdxZn1-xS, the number of reaction cycles, various cation sources, and the different reaction parameters on the formation mechanism and physical and chemical properties of nanomaterials were studied in this paper. The structural, optical analysis, chemical composition determination, morphology and the distribution of nanoparticles on the surface are characterized and studied using X-ray diffractometer (XRD), ultraviolet–visible (UV–Vis) spectrophotometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX) and optical microscopy. The particle size of the sample obtained after 5 cycles is larger than the particle size obtained at 2 cycles. The formation speed of nanoparticles is weak at room temperature and the particle size is in the range of 6.63–9.66 nm after 2 cycles and 8.89–22.7 nm after 5 cycles by SEM. The optical microscope results show that the distribution of elements by thickness is non-uniformity. The reason for non-uniformity is that the volume and surface energy are different. The band gap value of nanoparticles decreases as increasing the concentration of Cd2+ ions in CdxZn1-xS nanostructures. The decrease in Eg depends on the growth of the particle size. This type of materials have great applications in photovoltaics, solar cells, and markers.http://www.sciencedirect.com/science/article/pii/S2211379720317472NanocompositesSILAR methodCdxZn1-xS nanoparticlesPolyvinyl alcohol (PVA)Thin films |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mustafa Bayram Muradov Lala Rasim Gahramanli Ofeliya Oqtay Balayeva Ilyas Namaz Nasibov Goncha Malik Eyvazova Imameddin Rajabali Amiraslanov Zoxrab Adalat Aghamaliyev |
spellingShingle |
Mustafa Bayram Muradov Lala Rasim Gahramanli Ofeliya Oqtay Balayeva Ilyas Namaz Nasibov Goncha Malik Eyvazova Imameddin Rajabali Amiraslanov Zoxrab Adalat Aghamaliyev Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR method Results in Physics Nanocomposites SILAR method CdxZn1-xS nanoparticles Polyvinyl alcohol (PVA) Thin films |
author_facet |
Mustafa Bayram Muradov Lala Rasim Gahramanli Ofeliya Oqtay Balayeva Ilyas Namaz Nasibov Goncha Malik Eyvazova Imameddin Rajabali Amiraslanov Zoxrab Adalat Aghamaliyev |
author_sort |
Mustafa Bayram Muradov |
title |
Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR method |
title_short |
Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR method |
title_full |
Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR method |
title_fullStr |
Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR method |
title_full_unstemmed |
Formation mechanism of CdxZn1-xS/PVA nanocomposites by SILAR method |
title_sort |
formation mechanism of cdxzn1-xs/pva nanocomposites by silar method |
publisher |
Elsevier |
series |
Results in Physics |
issn |
2211-3797 |
publishDate |
2020-09-01 |
description |
In this study, CdxZn1-xS/PVA nanocomposites have been grown within polyvinyl alcohol (PVA) polymer matrix using the combined sorption of the cations by the successive ionic layer adsorption and reaction (SILAR) method. The effects of the different amount of Cd2+ and Zn2+ ions depending on the × value in CdxZn1-xS, the number of reaction cycles, various cation sources, and the different reaction parameters on the formation mechanism and physical and chemical properties of nanomaterials were studied in this paper. The structural, optical analysis, chemical composition determination, morphology and the distribution of nanoparticles on the surface are characterized and studied using X-ray diffractometer (XRD), ultraviolet–visible (UV–Vis) spectrophotometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX) and optical microscopy. The particle size of the sample obtained after 5 cycles is larger than the particle size obtained at 2 cycles. The formation speed of nanoparticles is weak at room temperature and the particle size is in the range of 6.63–9.66 nm after 2 cycles and 8.89–22.7 nm after 5 cycles by SEM. The optical microscope results show that the distribution of elements by thickness is non-uniformity. The reason for non-uniformity is that the volume and surface energy are different. The band gap value of nanoparticles decreases as increasing the concentration of Cd2+ ions in CdxZn1-xS nanostructures. The decrease in Eg depends on the growth of the particle size. This type of materials have great applications in photovoltaics, solar cells, and markers. |
topic |
Nanocomposites SILAR method CdxZn1-xS nanoparticles Polyvinyl alcohol (PVA) Thin films |
url |
http://www.sciencedirect.com/science/article/pii/S2211379720317472 |
work_keys_str_mv |
AT mustafabayrammuradov formationmechanismofcdxzn1xspvananocompositesbysilarmethod AT lalarasimgahramanli formationmechanismofcdxzn1xspvananocompositesbysilarmethod AT ofeliyaoqtaybalayeva formationmechanismofcdxzn1xspvananocompositesbysilarmethod AT ilyasnamaznasibov formationmechanismofcdxzn1xspvananocompositesbysilarmethod AT gonchamalikeyvazova formationmechanismofcdxzn1xspvananocompositesbysilarmethod AT imameddinrajabaliamiraslanov formationmechanismofcdxzn1xspvananocompositesbysilarmethod AT zoxrabadalataghamaliyev formationmechanismofcdxzn1xspvananocompositesbysilarmethod |
_version_ |
1724581808645865472 |