A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers

We provide a systematic analysis of geometric parametric instabilities in nonlinear graded-index multimode fibers. Our approach implicitly accounts for self-focusing effects and considers dispersion processes to all orders. It is shown that the resulting parametric problem takes the form of a Hill’s...

Full description

Bibliographic Details
Main Authors: H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, D. N. Christodoulides
Format: Article
Language:English
Published: AIP Publishing LLC 2019-02-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/1.5044659
id doaj-9a6e918727eb453883b6600c8bbf1cdc
record_format Article
spelling doaj-9a6e918727eb453883b6600c8bbf1cdc2020-11-24T23:59:32ZengAIP Publishing LLCAPL Photonics2378-09672019-02-0142022803022803-710.1063/1.5044659006894APPA systematic analysis of parametric instabilities in nonlinear parabolic multimode fibersH. E. Lopez-Aviles0F. O. Wu1Z. Sanjabi Eznaveh2M. A. Eftekhar3F. Wise4R. Amezcua Correa5D. N. Christodoulides6CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USACREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USACREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USACREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USASchool of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USACREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USACREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USAWe provide a systematic analysis of geometric parametric instabilities in nonlinear graded-index multimode fibers. Our approach implicitly accounts for self-focusing effects and considers dispersion processes to all orders. It is shown that the resulting parametric problem takes the form of a Hill’s equation that can be systematically addressed using a Floquet approach. The theory developed indicates that the unstable spectral domains associated with such geometric parametric instabilities can be significantly altered as the power levels injected in a parabolic multimode fiber increase. These predictions are in excellent agreement with experimental data gathered from graded-index multimode structures.http://dx.doi.org/10.1063/1.5044659
collection DOAJ
language English
format Article
sources DOAJ
author H. E. Lopez-Aviles
F. O. Wu
Z. Sanjabi Eznaveh
M. A. Eftekhar
F. Wise
R. Amezcua Correa
D. N. Christodoulides
spellingShingle H. E. Lopez-Aviles
F. O. Wu
Z. Sanjabi Eznaveh
M. A. Eftekhar
F. Wise
R. Amezcua Correa
D. N. Christodoulides
A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers
APL Photonics
author_facet H. E. Lopez-Aviles
F. O. Wu
Z. Sanjabi Eznaveh
M. A. Eftekhar
F. Wise
R. Amezcua Correa
D. N. Christodoulides
author_sort H. E. Lopez-Aviles
title A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers
title_short A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers
title_full A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers
title_fullStr A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers
title_full_unstemmed A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers
title_sort systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers
publisher AIP Publishing LLC
series APL Photonics
issn 2378-0967
publishDate 2019-02-01
description We provide a systematic analysis of geometric parametric instabilities in nonlinear graded-index multimode fibers. Our approach implicitly accounts for self-focusing effects and considers dispersion processes to all orders. It is shown that the resulting parametric problem takes the form of a Hill’s equation that can be systematically addressed using a Floquet approach. The theory developed indicates that the unstable spectral domains associated with such geometric parametric instabilities can be significantly altered as the power levels injected in a parabolic multimode fiber increase. These predictions are in excellent agreement with experimental data gathered from graded-index multimode structures.
url http://dx.doi.org/10.1063/1.5044659
work_keys_str_mv AT helopezaviles asystematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT fowu asystematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT zsanjabieznaveh asystematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT maeftekhar asystematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT fwise asystematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT ramezcuacorrea asystematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT dnchristodoulides asystematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT helopezaviles systematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT fowu systematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT zsanjabieznaveh systematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT maeftekhar systematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT fwise systematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT ramezcuacorrea systematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
AT dnchristodoulides systematicanalysisofparametricinstabilitiesinnonlinearparabolicmultimodefibers
_version_ 1725447553507393536