ELM-ANFIS Based Controller for Plug-In Electric Vehicle to Grid Integration

An Adaptive Neuro Fuzzy Inference System (ANFIS) based Extreme Learning Machine (ELM) theory is utilised in this research work. In particular, the proposed algorithm is applied for designing a controller for electric vehicle to grid (V2G) integration in smart grid scenario. Initially, learning speed...

Full description

Bibliographic Details
Main Authors: Kalaiselvi Kandasamy, Renuga Perumal, Suresh Kumar Velu
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2018-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/295371
Description
Summary:An Adaptive Neuro Fuzzy Inference System (ANFIS) based Extreme Learning Machine (ELM) theory is utilised in this research work. In particular, the proposed algorithm is applied for designing a controller for electric vehicle to grid (V2G) integration in smart grid scenario. Initially, learning speed and accuracy of this proposed approach are continuously monitored and then, the performance of ELM-ANFIS (e-ANFIS) based controller is examined for its transient response. The proposed new learning technique overcomes the slow learning speed of the conventional ANFIS algorithm without sacrificing the generalization capability. Hence, a control practice for their charge and discharge patterns can be easily calculated even with the presence of large numbers of Plug-in Hybrid Electric Vehicles (PHEV). To examine the computational performance and transient response of the e-ANFIS based controller, it is evaluated with the usual ANFIS supported controller. The IEEE 33 bus radial distribution system based approach is implemented to ensure the sturdiness of this prescribed approach.
ISSN:1330-3651
1848-6339