Sequencing and Chromosome-Scale Assembly of Plant Genomes, <i>Brassica rapa</i> as a Use Case

With the rise of long-read sequencers and long-range technologies, delivering high-quality plant genome assemblies is no longer reserved to large consortia. Not only sequencing techniques, but also computer algorithms have reached a point where the reconstruction of assemblies at the chromosome scal...

Full description

Bibliographic Details
Main Authors: Benjamin Istace, Caroline Belser, Cyril Falentin, Karine Labadie, Franz Boideau, Gwenaëlle Deniot, Loeiz Maillet, Corinne Cruaud, Laurie Bertrand, Anne-Marie Chèvre, Patrick Wincker, Mathieu Rousseau-Gueutin, Jean-Marc Aury
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Biology
Subjects:
Online Access:https://www.mdpi.com/2079-7737/10/8/732
Description
Summary:With the rise of long-read sequencers and long-range technologies, delivering high-quality plant genome assemblies is no longer reserved to large consortia. Not only sequencing techniques, but also computer algorithms have reached a point where the reconstruction of assemblies at the chromosome scale is now feasible at the laboratory scale. Current technologies, in particular long-range technologies, are numerous, and selecting the most promising one for the genome of interest is crucial to obtain optimal results. In this study, we resequenced the genome of the yellow sarson, <i>Brassica rapa</i> cv. Z1, using the Oxford Nanopore PromethION sequencer and assembled the sequenced data using current assemblers. To reconstruct complete chromosomes, we used and compared three long-range scaffolding techniques, optical mapping, Omni-C, and Pore-C sequencing libraries, commercialized by Bionano Genomics, Dovetail Genomics, and Oxford Nanopore Technologies, respectively, or a combination of the three, in order to evaluate the capability of each technology.
ISSN:2079-7737