Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model

This study focuses on two new aspects of inverse modelling of volcanic emissions. First, we derive an observation operator for satellite retrievals of plume height, and second, we solve the inverse problem using an algorithm based on the 4D-Var data assimilation method. The approach is first tested...

Full description

Bibliographic Details
Main Authors: J. Vira, E. Carboni, R. G. Grainger, M. Sofiev
Format: Article
Language:English
Published: Copernicus Publications 2017-05-01
Series:Geoscientific Model Development
Online Access:http://www.geosci-model-dev.net/10/1985/2017/gmd-10-1985-2017.pdf
id doaj-9d1f9f989fe9405b98c0bcab65f5e61b
record_format Article
spelling doaj-9d1f9f989fe9405b98c0bcab65f5e61b2020-11-24T21:04:24ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032017-05-011051985200810.5194/gmd-10-1985-2017Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport modelJ. Vira0E. Carboni1R. G. Grainger2M. Sofiev3Finnish Meteorological Institute, Erik Palménin aukio 1, 00560 Helsinki, FinlandCOMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UKCOMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UKFinnish Meteorological Institute, Erik Palménin aukio 1, 00560 Helsinki, FinlandThis study focuses on two new aspects of inverse modelling of volcanic emissions. First, we derive an observation operator for satellite retrievals of plume height, and second, we solve the inverse problem using an algorithm based on the 4D-Var data assimilation method. The approach is first tested in a twin experiment with simulated observations and further evaluated by assimilating IASI SO<sub>2</sub> plume height and total column retrievals in a source term inversion for the 2010 eruption of Eyjafjallajökull. The inversion resulted in temporal and vertical reconstruction of the SO<sub>2</sub> emissions during 1–20 May 2010 with formal vertical and temporal resolutions of 500 m and 12 h.<br><br>The plume height observation operator is based on simultaneous assimilation of the plume height and total column retrievals. The plume height is taken to represent the vertical centre of mass, which is transformed into the first moment of mass (centre of mass times total mass). This makes the observation operator linear and simple to implement. The necessary modifications to the observation error covariance matrix are derived.<br><br>Regularization by truncated iteration is investigated as a simple and efficient regularization method for the 4D-Var-based inversion. In the twin experiments, the truncated iteration was found to perform similarly to the commonly used Tikhonov regularization, which in turn is equivalent to a Gaussian a priori source term. However, the truncated iteration allows the level of regularization to be determined a posteriori without repeating the inversion.<br><br>In the twin experiments, assimilating the plume height retrievals resulted in a 5–20 % improvement in root mean squared error but simultaneously introduced a 10–20 % low bias on the total emission depending on assumed emission profile. The results are consistent with those obtained with real data. For Eyjafjallajökull, comparisons with observations showed that assimilating the plume height retrievals reduced the overestimation of injection height during individual periods of 1–3 days, but for most of the simulated 20 days, the injection height was constrained by meteorological conditions, and assimilation of the plume height retrievals had only small impact. The a posteriori source term for Eyjafjallajökull consisted of 0.29 Tg (with total column and plume height retrievals) or 0.33 Tg (with total column retrievals only) erupted SO<sub>2</sub> of which 95 % was injected below 11 or 12 km, respectively.http://www.geosci-model-dev.net/10/1985/2017/gmd-10-1985-2017.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. Vira
E. Carboni
R. G. Grainger
M. Sofiev
spellingShingle J. Vira
E. Carboni
R. G. Grainger
M. Sofiev
Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model
Geoscientific Model Development
author_facet J. Vira
E. Carboni
R. G. Grainger
M. Sofiev
author_sort J. Vira
title Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model
title_short Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model
title_full Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model
title_fullStr Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model
title_full_unstemmed Variational assimilation of IASI SO<sub>2</sub> plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model
title_sort variational assimilation of iasi so<sub>2</sub> plume height and total column retrievals in the 2010 eruption of eyjafjallajökull using the silam v5.3 chemistry transport model
publisher Copernicus Publications
series Geoscientific Model Development
issn 1991-959X
1991-9603
publishDate 2017-05-01
description This study focuses on two new aspects of inverse modelling of volcanic emissions. First, we derive an observation operator for satellite retrievals of plume height, and second, we solve the inverse problem using an algorithm based on the 4D-Var data assimilation method. The approach is first tested in a twin experiment with simulated observations and further evaluated by assimilating IASI SO<sub>2</sub> plume height and total column retrievals in a source term inversion for the 2010 eruption of Eyjafjallajökull. The inversion resulted in temporal and vertical reconstruction of the SO<sub>2</sub> emissions during 1–20 May 2010 with formal vertical and temporal resolutions of 500 m and 12 h.<br><br>The plume height observation operator is based on simultaneous assimilation of the plume height and total column retrievals. The plume height is taken to represent the vertical centre of mass, which is transformed into the first moment of mass (centre of mass times total mass). This makes the observation operator linear and simple to implement. The necessary modifications to the observation error covariance matrix are derived.<br><br>Regularization by truncated iteration is investigated as a simple and efficient regularization method for the 4D-Var-based inversion. In the twin experiments, the truncated iteration was found to perform similarly to the commonly used Tikhonov regularization, which in turn is equivalent to a Gaussian a priori source term. However, the truncated iteration allows the level of regularization to be determined a posteriori without repeating the inversion.<br><br>In the twin experiments, assimilating the plume height retrievals resulted in a 5–20 % improvement in root mean squared error but simultaneously introduced a 10–20 % low bias on the total emission depending on assumed emission profile. The results are consistent with those obtained with real data. For Eyjafjallajökull, comparisons with observations showed that assimilating the plume height retrievals reduced the overestimation of injection height during individual periods of 1–3 days, but for most of the simulated 20 days, the injection height was constrained by meteorological conditions, and assimilation of the plume height retrievals had only small impact. The a posteriori source term for Eyjafjallajökull consisted of 0.29 Tg (with total column and plume height retrievals) or 0.33 Tg (with total column retrievals only) erupted SO<sub>2</sub> of which 95 % was injected below 11 or 12 km, respectively.
url http://www.geosci-model-dev.net/10/1985/2017/gmd-10-1985-2017.pdf
work_keys_str_mv AT jvira variationalassimilationofiasisosub2subplumeheightandtotalcolumnretrievalsinthe2010eruptionofeyjafjallajokullusingthesilamv53chemistrytransportmodel
AT ecarboni variationalassimilationofiasisosub2subplumeheightandtotalcolumnretrievalsinthe2010eruptionofeyjafjallajokullusingthesilamv53chemistrytransportmodel
AT rggrainger variationalassimilationofiasisosub2subplumeheightandtotalcolumnretrievalsinthe2010eruptionofeyjafjallajokullusingthesilamv53chemistrytransportmodel
AT msofiev variationalassimilationofiasisosub2subplumeheightandtotalcolumnretrievalsinthe2010eruptionofeyjafjallajokullusingthesilamv53chemistrytransportmodel
_version_ 1716771222201565184